Barry H Mauk

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/2293463/barry-h-mauk-publications-by-year.pdf

Version: 2024-04-10

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

311	10,678 citations	55	88
papers		h-index	g-index
355	11,786 ext. citations	7.1	5.73
ext. papers		avg, IF	L-index

#	Paper	IF	Citations
311	The Case for a New Frontiers [lass Uranus Orbiter: System Science at an Underexplored and Unique World with a Mid-scale Mission. <i>Planetary Science Journal</i> , 2022 , 3, 58	2.9	1
310	Simultaneous UV Images and High-Latitude Particle and Field Measurements During an Auroral Dawn Storm at Jupiter. <i>Journal of Geophysical Research: Space Physics</i> , 2021 , 126, e2021JA029679	2.6	O
309	A Tale of Two Radiation Belts: The Energy-Dependence of Self-Limiting Electron Space Radiation. <i>Geophysical Research Letters</i> , 2021 , 48, e2021GL095779	4.9	1
308	Are Dawn Storms Jupiter's Auroral Substorms?. AGU Advances, 2021, 2, e2020AV000275	5.4	8
307	Simultaneous Observation of an Auroral Dawn Storm With the Hubble Space Telescope and Juno. <i>Journal of Geophysical Research: Space Physics</i> , 2021 , 126, e2020JA028717	2.6	2
306	Jupiter's Ion Radiation Belts Inward of Europa's Orbit. <i>Journal of Geophysical Research: Space Physics</i> , 2021 , 126, e2020JA028925	2.6	4
305	Energy Spectra Near Ganymede From Juno Data. <i>Geophysical Research Letters</i> , 2021 , 48, e2021GL09302	14.9	3
304	High Latitude Zones of GeV Heavy Ions at the Inner Edge of Jupiter's Relativistic Electron Belt. Journal of Geophysical Research E: Planets, 2021 , 126, e2020JE006772	4.1	2
303	Jupiter high-energy/high-latitude electron environment from Juno JEDI and UVS science instrument background noise. <i>Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment</i> , 2021 , 1002, 165244	1.2	
302	Revealing the source of Jupiter's x-ray auroral flares. <i>Science Advances</i> , 2021 , 7,	14.3	7
301	Characteristics of Energetic Electrons Near Active Magnetotail Reconnection Sites: Statistical Evidence for Local Energization. <i>Geophysical Research Letters</i> , 2021 , 48, e2020GL090087	4.9	4
300	Characteristics of Energetic Electrons Near Active Magnetotail Reconnection Sites: Tracers of a Complex Magnetic Topology and Evidence of Localized Acceleration. <i>Geophysical Research Letters</i> , 2021 , 48, e2020GL090089	4.9	5
299	Proton Outflow Associated With Jupiter's Auroral Processes. <i>Geophysical Research Letters</i> , 2021 , 48,	4.9	3
298	Evidence for Nonadiabatic Oxygen Energization in the Near-Earth Magnetotail From MMS. <i>Geophysical Research Letters</i> , 2021 , 48, e2020GL091697	4.9	2
297	Jupiter's Double-Arc Aurora as a Signature of Magnetic Reconnection: Simultaneous Observations From HST and Juno. <i>Geophysical Research Letters</i> , 2021 , 48, e2021GL093964	4.9	O
296	Quantification of Diffuse Auroral Electron Precipitation Driven by Whistler Mode Waves at Jupiter. <i>Geophysical Research Letters</i> , 2021 , 48, e2021GL095457	4.9	1
295	Electron Partial Density and Temperature Over Jupiter's Main Auroral Emission Using Juno Observations. <i>Journal of Geophysical Research: Space Physics</i> , 2021 , 126, e2021JA029426	2.6	3

(2020-2021)

294	A Preliminary Study of Magnetosphere-Ionosphere-Thermosphere Coupling at Jupiter: Juno Multi-Instrument Measurements and Modeling Tools. <i>Journal of Geophysical Research: Space Physics</i> , 2021 , 126, e2021JA029469	2.6	2
293	Application of Cold and Hot Plasma Composition Measurements to Investigate Impacts on Dusk-Side Electromagnetic Ion Cyclotron Waves. <i>Journal of Geophysical Research: Space Physics</i> , 2021 , 126,	2.6	2
292	Energetic Electron Distributions Near the Magnetic Equator in the Jovian Plasma Sheet and Outer Radiation Belt Using Juno Observations. <i>Geophysical Research Letters</i> , 2021 , 48,	4.9	1
291	Charge-State-Dependent Energization of Suprathermal Ions During Substorm Injections Observed by MMS in the Magnetotail. <i>Journal of Geophysical Research: Space Physics</i> , 2020 , 125, e2020JA028144	2.6	3
2 90	First Report of Electron Measurements During a Europa Footprint Tail Crossing by Juno. <i>Geophysical Research Letters</i> , 2020 , 47, e2020GL089732	4.9	5
289	Juno Energetic Neutral Atom (ENA) Remote Measurements of Magnetospheric Injection Dynamics in Jupiter's Io Torus Regions. <i>Journal of Geophysical Research: Space Physics</i> , 2020 , 125, e2020JA027964	2.6	8
288	The Generation of Upward-Propagating Whistler Mode Waves by Electron Beams in the Jovian Polar Regions. <i>Journal of Geophysical Research: Space Physics</i> , 2020 , 125, e2020JA027868	2.6	8
287	Energetic Particles and Acceleration Regions Over Jupiter's Polar Cap and Main Aurora: A Broad Overview. <i>Journal of Geophysical Research: Space Physics</i> , 2020 , 125, e2019JA027699	2.6	15
286	Juno Observations of Heavy Ion Energization During Transient Dipolarizations in Jupiter Magnetotail. <i>Journal of Geophysical Research: Space Physics</i> , 2020 , 125, e2020JA027933	2.6	5
285	Plasma Sheet Boundary Layer in Jupiter's Magnetodisk as Observed by Juno. <i>Journal of Geophysical Research: Space Physics</i> , 2020 , 125, e2020JA027957	2.6	4
284	Energy Flux and Characteristic Energy of Electrons Over Jupiter's Main Auroral Emission. <i>Journal of Geophysical Research: Space Physics</i> , 2020 , 125, e2019JA027693	2.6	25
283	Comparative planetary ring currents 2020 , 271-307		
282	Characteristics of Escaping Magnetospheric Ions Associated With Magnetic Field Fluctuations. Journal of Geophysical Research: Space Physics, 2020 , 125, e2019JA027337	2.6	O
281	Jovian Auroral Ion Precipitation: X-Ray Production From Oxygen and Sulfur Precipitation. <i>Journal of Geophysical Research: Space Physics</i> , 2020 , 125, e2019JA027007	2.6	9
280	Energetic Proton Acceleration Associated With Io's Footprint Tail. <i>Geophysical Research Letters</i> , 2020 , 47, e2020GL090839	4.9	6
279	Energetic Neutral Atoms From Jupiter's Polar Regions. <i>Journal of Geophysical Research: Space Physics</i> , 2020 , 125, e2020JA028697	2.6	1
278	Heavy Ion Charge States in Jupiter's Polar Magnetosphere Inferred From Auroral Megavolt Electric Potentials. <i>Journal of Geophysical Research: Space Physics</i> , 2020 , 125, e2020JA028052	2.6	10
277	Microscopic, Multipoint Characterization of Foreshock Bubbles With Magnetospheric Multiscale (MMS). <i>Journal of Geophysical Research: Space Physics</i> , 2020 , 125, e2019JA027707	2.6	25

276	Reconnection- and Dipolarization-Driven Auroral Dawn Storms and Injections. <i>Journal of Geophysical Research: Space Physics</i> , 2020 , 125, e2019JA027663	2.6	11
275	Magnetospheric Studies: A Requirement for Addressing Interdisciplinary Mysteries in the Ice Giant Systems. <i>Space Science Reviews</i> , 2020 , 216, 1	7.5	10
274	Method to Derive Ion Properties From Juno JADE Including Abundance Estimates for O+ and S2+. Journal of Geophysical Research: Space Physics, 2020 , 125, e2018JA026169	2.6	18
273	Europa Neutral Torus Confirmation and Characterization Based on Observations and Modeling. <i>Astrophysical Journal</i> , 2019 , 871, 69	4.7	12
272	High-Resolution Measurements of the Cross-Shock Potential, Ion Reflection, and Electron Heating at an Interplanetary Shock by MMS. <i>Journal of Geophysical Research: Space Physics</i> , 2019 , 124, 3961-397	8 ^{2.6}	28
271	In situ spacecraft observations of a structured electron diffusion region during magnetopause reconnection. <i>Physical Review E</i> , 2019 , 99, 043204	2.4	9
270	Jovian Injections Observed at High Latitude. <i>Geophysical Research Letters</i> , 2019 , 46, 9397-9404	4.9	12
269	Delayed Arrival of Energetic Solar Particles at MMS on 16 July 2017. <i>Journal of Geophysical Research: Space Physics</i> , 2019 , 124, 2711-2719	2.6	1
268	Drift-Dispersed Flux Dropouts of Energetic Electrons Observed in Earth's Middle Magnetosphere by the Magnetospheric Multiscale (MMS) Mission. <i>Geophysical Research Letters</i> , 2019 , 46, 3069-3078	4.9	5
267	Investigation of Mass-/Charge-Dependent Escape of Energetic Ions Across the Magnetopauses of Earth and Jupiter. <i>Journal of Geophysical Research: Space Physics</i> , 2019 , 124, 5539-5567	2.6	12
266	Birkeland currents in Jupiter magnetosphere observed by the polar-orbiting Juno spacecraft. <i>Nature Astronomy</i> , 2019 , 3, 904-909	12.1	23
265	High-Energy (>10 MeV) Oxygen and Sulfur Ions Observed at Jupiter From Pulse Width Measurements of the JEDI Sensors. <i>Geophysical Research Letters</i> , 2019 , 46, 10959-10966	4.9	2
264	On the Relation Between Jovian Aurorae and the Loading/Unloading of the Magnetic Flux: Simultaneous Measurements From Juno, Hubble Space Telescope, and Hisaki. <i>Geophysical Research Letters</i> , 2019 , 46, 11632-11641	4.9	21
263	MMS Measurements and Modeling of Peculiar Electromagnetic Ion Cyclotron Waves. <i>Geophysical Research Letters</i> , 2019 , 46, 11622-11631	4.9	6
262	Io's Effect on Energetic Charged Particles as Seen in Juno Data. <i>Geophysical Research Letters</i> , 2019 , 46, 13615-13620	4.9	9
261	Contemporaneous Observations of Jovian Energetic Auroral Electrons and Ultraviolet Emissions by the Juno Spacecraft. <i>Journal of Geophysical Research: Space Physics</i> , 2019 , 124, 8298-8317	2.6	16
260	Comparing Electron Energetics and UV Brightness in Jupiter's Northern Polar Region During Juno Perijove 5. <i>Geophysical Research Letters</i> , 2019 , 46, 19-27	4.9	14
259	Pitch Angle Scattering of Upgoing Electron Beams in Jupiter's Polar Regions by Whistler Mode Waves. <i>Geophysical Research Letters</i> , 2018 , 45, 1246-1252	4.9	13

258	The Properties of Lion Roars and Electron Dynamics in Mirror Mode Waves Observed by the Magnetospheric MultiScale Mission. <i>Journal of Geophysical Research: Space Physics</i> , 2018 , 123, 93-103	2.6	18
257	Space Weather Operation at KASI With Van Allen Probes Beacon Signals. <i>Space Weather</i> , 2018 , 16, 108-	·1 <u>3.</u> 9	
256	Intervals of Intense Energetic Electron Beams Over Jupiter's Poles. <i>Journal of Geophysical Research:</i> Space Physics, 2018 , 123, 1989	2.6	21
255	Diverse Electron and Ion Acceleration Characteristics Observed Over Jupiter's Main Aurora. <i>Geophysical Research Letters</i> , 2018 , 45, 1277-1285	4.9	35
254	Jupiter's Aurora Observed With HST During Juno Orbits 3 to 7. <i>Journal of Geophysical Research:</i> Space Physics, 2018 , 123, 3299-3319	2.6	29
253	Effects in the Near-Magnetopause Magnetosheath Elicited by Large-Amplitude Alfvflic Fluctuations Terminating in a Field and Flow Discontinuity. <i>Journal of Geophysical Research: Space Physics</i> , 2018 , 123, 8983-9004	2.6	1
252	Multiscale Currents Observed by MMS in the Flow Braking Region. <i>Journal of Geophysical Research:</i> Space Physics, 2018 , 123, 1260-1278	2.6	27
251	Precipitating Electron Energy Flux and Characteristic Energies in Jupiter's Main Auroral Region as Measured by Juno/JEDI. <i>Journal of Geophysical Research: Space Physics</i> , 2018 , 123, 7554-7567	2.6	33
250	Electron Acceleration to MeV Energies at Jupiter and Saturn. <i>Journal of Geophysical Research: Space Physics</i> , 2018 , 123, 9110-9129	2.6	24
249	Electron-scale dynamics of the diffusion region during symmetric magnetic reconnection in space. <i>Science</i> , 2018 , 362, 1391-1395	33.3	139
248	Magnetotail Hall Physics in the Presence of Cold Ions. <i>Geophysical Research Letters</i> , 2018 , 45, 10,941	4.9	9
247	The Acceleration of Electrons to High Energies Over the Jovian Polar Cap via Whistler Mode Wave-Particle Interactions. <i>Journal of Geophysical Research: Space Physics</i> , 2018 , 123, 7523-7533	2.6	15
246	A radiation belt of energetic protons located between Saturn and its rings. Science, 2018, 362,	33.3	19
245	Wave-Particle Interaction of AlfvE Waves in Jupiter's Magnetosphere: Auroral and Magnetospheric Particle Acceleration. <i>Journal of Geophysical Research: Space Physics</i> , 2018 , 123, 9560-9	9573	37
244	In Situ Observations Connected to the Io Footprint Tail Aurora. <i>Journal of Geophysical Research E: Planets</i> , 2018 , 123, 3061-3077	4.1	27
243	Whistler Mode Waves Associated With Broadband Auroral Electron Precipitation at Jupiter. <i>Geophysical Research Letters</i> , 2018 , 45, 9372-9379	4.9	13
242	Autogenous and efficient acceleration of energetic ions upstream of Earth's bow shock. <i>Nature</i> , 2018 , 561, 206-210	50.4	32
241	Juno observations of spot structures and a split tail in Io-induced aurorae on Jupiter. <i>Science</i> , 2018 , 361, 774-777	33.3	27

240	Jupiter's magnetosphere and aurorae observed by the Juno spacecraft during its first polar orbits. <i>Science</i> , 2017 , 356, 826-832	33.3	93
239	Infrared observations of Jovian aurora from Juno's first orbits: Main oval and satellite footprints. <i>Geophysical Research Letters</i> , 2017 , 44, 5308-5316	4.9	20
238	Plasma waves in Jupiter's high-latitude regions: Observations from the Juno spacecraft. <i>Geophysical Research Letters</i> , 2017 , 44, 4447-4454	4.9	25
237	Plasma measurements in the Jovian polar region with Juno/JADE. <i>Geophysical Research Letters</i> , 2017 , 44, 7122-7130	4.9	30
236	Juno/JEDI observations of 0.01 to >10 MeV energetic ions in the Jovian auroral regions: Anticipating a source for polar X-ray emission. <i>Geophysical Research Letters</i> , 2017 , 44, 6476-6482	4.9	14
235	Plasma environment at the dawn flank of Jupiter's magnetosphere: Juno arrives at Jupiter. <i>Geophysical Research Letters</i> , 2017 , 44, 4432-4438	4.9	21
234	Hot flow anomaly observed at Jupiter's bow shock. <i>Geophysical Research Letters</i> , 2017 , 44, 8107-8112	4.9	12
233	A heavy ion and proton radiation belt inside of Jupiter's rings. <i>Geophysical Research Letters</i> , 2017 , 44, 5259-5268	4.9	20
232	Searching for low-altitude magnetic field anomalies by using observations of the energetic particle loss cone on JUNO. <i>Geophysical Research Letters</i> , 2017 , 44, 4472-4480	4.9	2
231	Juno observations of energetic charged particles over Jupiter's polar regions: Analysis of monodirectional and bidirectional electron beams. <i>Geophysical Research Letters</i> , 2017 , 44, 4410-4418	4.9	74
230	Observation and interpretation of energetic ion conics in Jupiter's polar magnetosphere. <i>Geophysical Research Letters</i> , 2017 , 44, 4419-4425	4.9	18
229	Radiation near Jupiter detected by Juno/JEDI during PJ1 and PJ3. <i>Geophysical Research Letters</i> , 2017 , 44, 4426-4431	4.9	8
228	Preliminary JIRAM results from Juno polar observations: 2. Analysis of the Jupiter southern H3+ emissions and comparison with the north aurora. <i>Geophysical Research Letters</i> , 2017 , 44, 4633-4640	4.9	16
227	Preliminary JIRAM results from Juno polar observations: 1. Methodology and analysis applied to the Jovian northern polar region. <i>Geophysical Research Letters</i> , 2017 , 44, 4625-4632	4.9	14
226	Electron butterfly distributions at particular magnetic latitudes observed during Juno's perijove pass. <i>Geophysical Research Letters</i> , 2017 , 44, 4489-4496	4.9	6
225	Response of Jupiter's auroras to conditions in the interplanetary medium as measured by the Hubble Space Telescope and Juno. <i>Geophysical Research Letters</i> , 2017 , 44, 7643-7652	4.9	52
224	Morphology of the UV aurorae Jupiter during Juno's first perijove observations. <i>Geophysical Research Letters</i> , 2017 , 44, 4463-4471	4.9	43
223	Electron beams and loss cones in the auroral regions of Jupiter. <i>Geophysical Research Letters</i> , 2017 , 44, 7131-7139	4.9	51

222	Juno-UVS approach observations of Jupiter's auroras. <i>Geophysical Research Letters</i> , 2017 , 44, 7668-767	54.9	19	
221	Preliminary JIRAM results from Juno polar observations: 3. Evidence of diffuse methane presence in the Jupiter auroral regions. <i>Geophysical Research Letters</i> , 2017 , 44, 4641-4648	4.9	11	
220	MMS observation of inverse energy dispersion in shock drift accelerated ions. <i>Journal of Geophysical Research: Space Physics</i> , 2017 , 122, 3232-3246	2.6	1	
219	Accelerated flows at Jupiter's magnetopause: Evidence for magnetic reconnection along the dawn flank. <i>Geophysical Research Letters</i> , 2017 , 44, 4401-4409	4.9	31	
218	A new view of Jupiter's auroral radio spectrum. <i>Geophysical Research Letters</i> , 2017 , 44, 7114-7121	4.9	27	
217	Multipoint Observations of Energetic Particle Injections and Substorm Activity During a Conjunction Between Magnetospheric Multiscale (MMS) and Van Allen Probes. <i>Journal of Geophysical Research: Space Physics</i> , 2017 , 122, 11,481-11,504	2.6	23	
216	Understanding the Origin of Jupiter's Diffuse Aurora Using Juno's First Perijove Observations. <i>Geophysical Research Letters</i> , 2017 , 44, 10,162-10,170	4.9	12	
215	Spatial Distribution and Properties of 0.1🛮 00 keV Electrons in Jupiter's Polar Auroral Region. <i>Geophysical Research Letters</i> , 2017 , 44, 9199-9207	4.9	30	
214	Examining Coherency Scales, Substructure, and Propagation of Whistler Mode Chorus Elements With Magnetospheric Multiscale (MMS). <i>Journal of Geophysical Research: Space Physics</i> , 2017 , 122, 11,20	0 7 -61,	226	
213	Lower Hybrid Drift Waves and Electromagnetic Electron Space-Phase Holes Associated With Dipolarization Fronts and Field-Aligned Currents Observed by the Magnetospheric Multiscale Mission During a Substorm. <i>Journal of Geophysical Research: Space Physics</i> , 2017 , 122, 12,236-12,257	2.6	24	
212	The MMS Dayside Magnetic Reconnection Locations During Phase 1 and Their Relation to the Predictions of the Maximum Magnetic Shear Model. <i>Journal of Geophysical Research: Space Physics</i> , 2017 , 122, 11,991-12,005	2.6	16	
211	The Kappa-Shaped Particle Spectra in Planetary Magnetospheres 2017 , 481-522		6	
210	Near-Earth plasma sheet boundary dynamics during substorm dipolarization. <i>Earth, Planets and Space</i> , 2017 , 69, 129	2.9	14	
209	Dominance of high-energy (>150 keV) heavy ion intensities in Earth's middle to outer magnetosphere. <i>Journal of Geophysical Research: Space Physics</i> , 2017 , 122, 9282-9293	2.6	14	
208	Energetic particle signatures of magnetic field-aligned potentials over Jupiter's polar regions. <i>Geophysical Research Letters</i> , 2017 , 44, 8703-8711	4.9	35	
207	Discrete and broadband electron acceleration in Jupiter's powerful aurora. <i>Nature</i> , 2017 , 549, 66-69	50.4	57	
206	Storm time empirical model of O+ and O6+ distributions in the magnetosphere. <i>Journal of Geophysical Research: Space Physics</i> , 2017 , 122, 8353-8374	2.6	15	
205	Statistical analysis of MMS observations of energetic electron escape observed at/beyond the dayside magnetopause. <i>Journal of Geophysical Research: Space Physics</i> , 2017 , 122, 9440-9463	2.6	11	

204	Energetic particle loss through the magnetopause: A combined global MHD and test-particle study. Journal of Geophysical Research: Space Physics, 2017, 122, 9329-9343	2.6	27
203	The Jupiter Energetic Particle Detector Instrument (JEDI) Investigation for the Juno Mission. <i>Space Science Reviews</i> , 2017 , 213, 289-346	7.5	113
202	Magnetospheric Science Objectives of the Juno Mission. <i>Space Science Reviews</i> , 2017 , 213, 219-287	7.5	138
201	The FlyE Eye Energetic Particle Spectrometer (FEEPS) Sensors for the Magnetospheric Multiscale (MMS) Mission 2017 , 307-327		
200	The Energetic Particle Detector (EPD) Investigation and the Energetic Ion Spectrometer (EIS) for the Magnetospheric Multiscale (MMS) Mission 2017 , 469-512		
199	The FlyE Eye Energetic Particle Spectrometer (FEEPS) Sensors for the Magnetospheric Multiscale (MMS) Mission. <i>Space Science Reviews</i> , 2016 , 199, 309-329	7.5	57
198	Inverse energy dispersion of energetic ions observed in the magnetosheath. <i>Geophysical Research Letters</i> , 2016 , 43, 7338-7347	4.9	5
197	Multispacecraft analysis of dipolarization fronts and associated whistler wave emissions using MMS data. <i>Geophysical Research Letters</i> , 2016 , 43, 7279-7286	4.9	38
196	Electrodynamic context of magnetopause dynamics observed by magnetospheric multiscale. <i>Geophysical Research Letters</i> , 2016 , 43, 5988-5996	4.9	8
195	Energy limits of electron acceleration in the plasma sheet during substorms: A case study with the Magnetospheric Multiscale (MMS) mission. <i>Geophysical Research Letters</i> , 2016 , 43, 7785-7794	4.9	33
194	The permeability of the magnetopause to a multispecies substorm injection of energetic particles. <i>Geophysical Research Letters</i> , 2016 , 43, 9453-9460	4.9	7
193	Dipolarization in the inner magnetosphere during a geomagnetic storm on 7 October 2015. Geophysical Research Letters, 2016 , 43, 9397-9405	4.9	5
192	Microinjections observed by MMS FEEPS in the dusk to midnight region. <i>Geophysical Research Letters</i> , 2016 , 43, 6078-6086	4.9	7
191	Charge states of energetic oxygen and sulfur ions in Jupiter's magnetosphere. <i>Journal of Geophysical Research: Space Physics</i> , 2016 , 121, 2264-2273	2.6	29
190	Comparison of Magnetospheric Multiscale ion jet signatures with predicted reconnection site locations at the magnetopause. <i>Geophysical Research Letters</i> , 2016 , 43, 5997-6004	4.9	16
189	A telescopic and microscopic examination of acceleration in the June 2015 geomagnetic storm: Magnetospheric Multiscale and Van Allen Probes study of substorm particle injection. <i>Geophysical Research Letters</i> , 2016 , 43, 6051-6059	4.9	21
188	The Energetic Particle Detector (EPD) Investigation and the Energetic Ion Spectrometer (EIS) for the Magnetospheric Multiscale (MMS) Mission. <i>Space Science Reviews</i> , 2016 , 199, 471-514	7.5	87
187	The "Puck" energetic charged particle detector: Design, heritage, and advancements. <i>Journal of Geophysical Research: Space Physics</i> , 2016 , 121, 7900-7913	2.6	13

(2014-2016)

186	Currents and associated electron scattering and bouncing near the diffusion region at Earth's magnetopause. <i>Geophysical Research Letters</i> , 2016 , 43, 3042-3050	4.9	65
185	Electron jet of asymmetric reconnection. <i>Geophysical Research Letters</i> , 2016 , 43, 5571-5580	4.9	59
184	Energetic electron acceleration observed by MMS in the vicinity of an X-line crossing. <i>Geophysical Research Letters</i> , 2016 , 43, 7356-7363	4.9	18
183	Electron-scale measurements of magnetic reconnection in space. <i>Science</i> , 2016 , 352, aaf2939	33.3	418
182	The response time of the magnetopause reconnection location to changes in the solar wind: MMS case study. <i>Geophysical Research Letters</i> , 2016 , 43, 4673-4682	4.9	18
181	Observations of energetic particle escape at the magnetopause: Early results from the MMS Energetic Ion Spectrometer (EIS). <i>Geophysical Research Letters</i> , 2016 , 43, 5960-5968	4.9	22
180	Transient, small-scale field-aligned currents in the plasma sheet boundary layer during storm time substorms. <i>Geophysical Research Letters</i> , 2016 , 43, 4841-4849	4.9	23
179	Modeling magnetospheric energetic particle escape across Earth's magnetopause as observed by the MMS mission. <i>Geophysical Research Letters</i> , 2016 , 43, 4081-4088	4.9	15
178	Kinetic evidence of magnetic reconnection due to Kelvin-Helmholtz waves. <i>Geophysical Research Letters</i> , 2016 , 43, 5635-5643	4.9	36
177	The substructure of a flux transfer event observed by the MMS spacecraft. <i>Geophysical Research Letters</i> , 2016 , 43, 9434-9443	4.9	21
176	Injection, Interchange, and Reconnection. <i>Geophysical Monograph Series</i> , 2015 , 327-343	1.1	28
175	Rotationally driven 'zebra stripes' in Earth's inner radiation belt. <i>Nature</i> , 2014 , 507, 338-40	50.4	27
174	The Evolving Space Weather SystemVan Allen Probes Contribution. Space Weather, 2014 , 12, 577-581	3.7	3
173	Using the kappa function to investigate hot plasma in the magnetospheres of the giant planets. Journal of Geophysical Research: Space Physics, 2014, 119, 8426-8447	2.6	13
172	The role of small-scale ion injections in the buildup of Earth's ring current pressure: Van Allen Probes observations of the 17 March 2013 storm. <i>Journal of Geophysical Research: Space Physics</i> , 2014 , 119, 7327-7342	2.6	75
171	Magnetic reconnection, buoyancy, and flapping motions in magnetotail explosions. <i>Journal of Geophysical Research: Space Physics</i> , 2014 , 119, 7151-7168	2.6	57
170	Comparative investigation of the energetic ion spectra comprising the magnetospheric ring currents of the solar system. <i>Journal of Geophysical Research: Space Physics</i> , 2014 , 119, 9729-9746	2.6	25
169	Journal Special Collection Explores Early Results From the Van Allen Probes Mission. <i>Eos</i> , 2014 , 95, 112-	1:152	2

168	Magnetospheric Science Objectives of the Juno Mission 2014 , 39-107		1
167	The Engineering Radiation Monitor for the Radiation Belt Storm Probes Mission. <i>Space Science Reviews</i> , 2013 , 179, 485-502	7.5	19
166	Early Results From the Engineering Radiation Monitor (ERM) and Solar Cell Monitor on the Van Allen Probes Mission. <i>IEEE Transactions on Nuclear Science</i> , 2013 , 60, 4053-4058	1.7	9
165	Comparative Auroral Physics: Earth and Other Planets. <i>Geophysical Monograph Series</i> , 2013 , 3-26	1.1	18
164	Radiation Belts of the Solar System and Universe. <i>Geophysical Monograph Series</i> , 2013 , 405-414	1.1	
163	Science Objectives and Rationale for the Radiation Belt Storm Probes Mission. <i>Space Science Reviews</i> , 2013 , 179, 3-27	7.5	686
162	Macroscopic Ion Acceleration Associated with the Formation of the Ring Current in the Earth's Magnetosphere. <i>Geophysical Monograph Series</i> , 2013 , 351-361	1.1	18
161	Instrumentation for Energetic Neutral Atom Imaging of Magnetospheres. <i>Geophysical Monograph Series</i> , 2013 , 165-170	1.1	11
160	X-Ray Images of an Auroral Break-Up. <i>Geophysical Monograph Series</i> , 2013 , 129-135	1.1	2
159	Macroscopic Magnetospheric Particle Acceleration. <i>Geophysical Monograph Series</i> , 2013 , 319-332	1.1	1
158	Analysis of EMIC-wave-moderated flux limitation of measured energetic ion spectra in multispecies magnetospheric plasmas. <i>Geophysical Research Letters</i> , 2013 , 40, 3804-3808	4.9	9
157	The Jupiter Energetic Particle Detector Instrument (JEDI) Investigation for the Juno Mission 2013, 471-	-528	1
156	The Engineering Radiation Monitor for the Radiation Belt Storm Probes Mission 2012 , 485-502		5
155	Science Objectives and Rationale for the Radiation Belt Storm Probes Mission 2012 , 3-27		28
154	The auroral footprint of Enceladus on Saturn. <i>Nature</i> , 2011 , 472, 331-3	50.4	77
153	Radiation belt storm probes: Resolving fundamental physics with practical consequences. <i>Journal of Atmospheric and Solar-Terrestrial Physics</i> , 2011 , 73, 1417-1424	2	22
152	Azimuthal plasma flow in the Kronian magnetosphere. Journal of Geophysical Research, 2010, 115, n/a-r	n/a	31
151	Saturn's periodic magnetic field perturbations caused by a rotating partial ring current. <i>Geophysical Research Letters</i> , 2010 , 37, n/a-n/a	4.9	35

150	Electron radiation belts of the solar system. <i>Journal of Geophysical Research</i> , 2010 , 115, n/a-n/a		81
149	Kronos: exploring the depths of Saturn with probes and remote sensing through an international mission. <i>Experimental Astronomy</i> , 2009 , 23, 947-976	1.3	8
148	Cassini evidence for rapid interchange transport at Saturn. Planetary and Space Science, 2009, 57, 1779-	·1 7 84	44
147	Ion conics and electron beams associated with auroral processes on Saturn. <i>Journal of Geophysical Research</i> , 2009 , 114, n/a-n/a		72
146	Energetic particle pressure in Saturn's magnetosphere measured with the Magnetospheric Imaging Instrument on Cassini. <i>Journal of Geophysical Research</i> , 2009 , 114, n/a-n/a		79
145	Fundamental Plasma Processes in Saturn's Magnetosphere 2009 , 281-331		57
144	Electron circulation in Saturn's magnetosphere. <i>Journal of Geophysical Research</i> , 2008 , 113, n/a-n/a		51
143	Understanding the global evolution of Saturn's ring current. <i>Geophysical Research Letters</i> , 2008 , 35,	4.9	30
142	Energetic electrons injected into Saturn's neutral gas cloud. <i>Geophysical Research Letters</i> , 2007 , 34,	4.9	46
141	Electron sources in Saturn's magnetosphere. <i>Journal of Geophysical Research</i> , 2007 , 112, n/a-n/a		76
140	Europa's near-surface radiation environment. <i>Geophysical Research Letters</i> , 2007 , 34,	4.9	36
139	Equatorial electron beams and auroral structuring at Jupiter. <i>Journal of Geophysical Research</i> , 2007 , 112, n/a-n/a		30
138	MESSENGER: Exploring Mercury Magnetosphere. Space Science Reviews, 2007, 131, 133-160	7.5	49
137	The Energetic Particle and Plasma Spectrometer Instrument on the MESSENGER Spacecraft. <i>Space Science Reviews</i> , 2007 , 131, 523-556	7.5	182
136	Energetic particles in the jovian magnetotail. <i>Science</i> , 2007 , 318, 220-2	33.3	47
135	The Energetic Particle and Plasma Spectrometer Instrument on the MESSENGER Spacecraft 2007 , 523-	556	1
134	MESSENGER: Exploring Mercury® Magnetosphere 2007 , 133-160		2
133	Energetic nitrogen ions within the inner magnetosphere of Saturn. <i>Journal of Geophysical Research</i> , 2006 , 111,		16

132	Europa's FUV auroral tail on Jupiter. <i>Geophysical Research Letters</i> , 2006 , 33,	4.9	24
131	Role of non-adiabatic processes in the creation of the outer radiation belts. <i>Geophysical Research Letters</i> , 2006 , 33, n/a-n/a	4.9	15
130	Convection electric field in the near-Earth tail during the super magnetic storm of November 2011, 2003. <i>Geophysical Research Letters</i> , 2006 , 33,	4.9	5
129	Anti-planetward auroral electron beams at Saturn. <i>Nature</i> , 2006 , 439, 699-702	50.4	37
128	Storm-time convection electric field in the near-Earth plasma sheet. <i>Journal of Geophysical Research</i> , 2005 , 110,		24
127	Energetic particle injections in Saturn's magnetosphere. <i>Geophysical Research Letters</i> , 2005 , 32, n/a-n/a	4.9	100
126	Energetic ion acceleration in Saturn's magnetotail: Substorms at Saturn?. <i>Geophysical Research Letters</i> , 2005 , 32,	4.9	116
125	The Saturnian plasma sheet as revealed by energetic particle measurements. <i>Geophysical Research Letters</i> , 2005 , 32,	4.9	49
124	Periodic intensity variations in global ENA images of Saturn. <i>Geophysical Research Letters</i> , 2005 , 32,	4.9	69
123	Energetic neutral atom emissions from Titan interaction with Saturn's magnetosphere. <i>Science</i> , 2005 , 308, 989-92	33.3	41
122	Dynamics of Saturn's magnetosphere from MIMI during Cassini's orbital insertion. <i>Science</i> , 2005 , 307, 1270-3	33.3	158
121	Magnetosphere Imaging Instrument (MIMI) on the Cassini Mission to Saturn/Titan. <i>Space Science Reviews</i> , 2004 , 114, 233-329	7.5	332
120	Io as the trigger of energetic electron disturbances in the inner Jovian magnetosphere. <i>Advances in Space Research</i> , 2004 , 34, 2242-2246	2.4	4
119	Energetic ion composition in Saturn's magnetosphere revisited. <i>Geophysical Research Letters</i> , 2004 , 31,	4.9	10
118	Energetic neutral atoms from Jupiter measured with the Cassini magnetospheric imaging instrument: Time dependence and composition. <i>Journal of Geophysical Research</i> , 2004 , 109,		25
117	A model for the azimuthal plasma velocity in Saturn's magnetosphere. <i>Journal of Geophysical Research</i> , 2004 , 109,		41
116	Energetic ion characteristics and neutral gas interactions in Jupiter's magnetosphere. <i>Journal of Geophysical Research</i> , 2004 , 109,		174
115	Magnetosphere Imaging Instrument (MIMI) on the Cassini Mission to Saturn/Titan 2004 , 233-329		13

114	Miniaturized electron magnetic spectrometer. Advances in Space Research, 2003, 32, 389-394	2.4	
113	Energetic neutral atoms from a trans-Europa gas torus at Jupiter. <i>Nature</i> , 2003 , 421, 920-2	50.4	102
112	The radiation environment near Io. Geophysical Research Letters, 2003, 30,	4.9	10
111	Implications of Jovian X-ray emission for magnetosphere-ionosphere coupling. <i>Journal of Geophysical Research</i> , 2003 , 108,		83
110	Magnetospheric and Plasma Science with Cassini-Huygens 2003 , 253-346		1
109	Transient aurora on Jupiter from injections of magnetospheric electrons. <i>Nature</i> , 2002 , 415, 1003-5	50.4	89
108	A nebula of gases from Io surrounding Jupiter. <i>Nature</i> , 2002 , 415, 994-6	50.4	37
107	Magnetospheric and Plasma Science with Cassini-Huygens. <i>Space Science Reviews</i> , 2002 , 104, 253-346	7.5	45
106	Magnetosphere-Ionosphere Coupling at Earth, Jupiter, and Beyond. <i>Geophysical Monograph Series</i> , 2002 , 97-114	1.1	24
105	The ion environment near Europa and its role in surface energetics. <i>Geophysical Research Letters</i> , 2002 , 29, 18-1-18-4	4.9	73
104	Leakage of energetic particles from Jupiter's dusk magnetosphere: Dual spacecraft observations. <i>Geophysical Research Letters</i> , 2002 , 29, 26-1-26-4	4.9	24
103	The MESSENGER mission to Mercury: scientific payload. <i>Planetary and Space Science</i> , 2001 , 49, 1467-14	7 <u>9</u>	104
102	A multi-instrument study of a Jovian magnetospheric disturbance. <i>Journal of Geophysical Research</i> , 2001 , 106, 29883-29898		28
101	Understanding Io's space environment interaction: Recent energetic electron measurements from Galileo. <i>Journal of Geophysical Research</i> , 2001 , 106, 26195-26208		27
100	Magnetospheric ion sputtering: The case of Europa and its surface age. <i>Advances in Space Research</i> , 2000 , 26, 1649-1652	2.4	9
99	Acceleration of oxygen ions of ionospheric origin in the near-Earth magnetotail during substorms. <i>Journal of Geophysical Research</i> , 2000 , 105, 7669-7677		66
98	Trapped Energetic Electrons in the Magnetosphere of Ganymede. <i>Journal of Geophysical Research</i> , 2000 , 105, 5547-5553		12
97	Magnetospheric multiscale and global electrodynamics missions. <i>Geophysical Monograph Series</i> , 1999 , 225-235	1.1	1

96	Galileo energetic particles detector measurements of hot ions in the neutral sheet region of Jupiter's magnetodisk. <i>Geophysical Research Letters</i> , 1999 , 26, 5-8	28
95	Storm-like dynamics of Jupiter's inner and middle magnetosphere. <i>Journal of Geophysical Research</i> , 1999 , 104, 22759-22778	89
94	Energetic electron beams and trapped electrons at Io. Journal of Geophysical Research, 1999, 104, 14739-147	53 45
93	Energetic particle observations near Ganymede. <i>Journal of Geophysical Research</i> , 1999 , 104, 17459-17469	49
92	Imaging Saturns dust rings using energetic neutral atoms. <i>Planetary and Space Science</i> , 1998 , 46, 1349-1362	8
91	Local time asymmetry of drift shells for energetic electrons in the middle magnetosphere of Saturn. <i>Advances in Space Research</i> , 1998 , 21, 1479-1482	16
90	Energetic neutral atom imaging of Jupiter's magnetosphere using the Cassini MIMI instrument. Advances in Space Research, 1998 , 21, 1483-1486	8
89	Galileo-measured depletion of near-Io hot ring current plasmas since the Voyager epoch. <i>Journal of Geophysical Research</i> , 1998 , 103, 4715-4722	30
88	The solar wind velocity determined from Voyager 1 and 2: Low-Energy Charged Particle measurements in the outer heliosphere. <i>Journal of Geophysical Research</i> , 1998 , 103, 267-276	6
87	Ion sputtering and surface erosion at Europa. <i>Geophysical Research Letters</i> , 1998 , 25, 829-832 4.9	62
86	Plasma flow in the magnetosphere of Ganymede. <i>Geophysical Research Letters</i> , 1998 , 25, 1257-1260 4.9	6
85	Properties of Ganymede's magnetosphere as revealed by energetic particle observations. <i>Journal of Geophysical Research</i> , 1998 , 103, 17523-17534	48
84	Energetic neutral atom imager on the Swedish microsatellite ASTRID. <i>Geophysical Monograph Series</i> , 1998 , 257-262	10
83	The imaging neutral camera for the Cassini mission to Saturn and Titan. <i>Geophysical Monograph Series</i> , 1998 , 281-287	3
82	Evidence of a source of energetic ions at Saturn. <i>Journal of Geophysical Research</i> , 1997 , 102, 17459-17466	11
81	Pitch angle diffusion at Jupiter's moon Ganymede. <i>Journal of Geophysical Research</i> , 1997 , 102, 24283-24287	30
80	Energetic particle signatures at Ganymede: Implications for Ganymede's magnetic field. <i>Geophysical Research Letters</i> , 1997 , 24, 2163-2166	56
79	Energetic ion sputtering effects at Ganymede. <i>Geophysical Research Letters</i> , 1997 , 24, 2631-2634 4.9	29

78	Trapped electrons in Ganymede's magnetic field. <i>Geophysical Research Letters</i> , 1997 , 24, 2953-2956	4.9	36
77	Energy-time dispersed charged particle signatures of dynamic injections in Jupiter's inner magnetosphere. <i>Geophysical Research Letters</i> , 1997 , 24, 2949-2952	4.9	57
76	Equatorial X-ray Emissions: Implications for Jupiter's High Exospheric Temperatures. <i>Science</i> , 1997 , 276, 104-8	33.3	87
75	Energetic neutral atom imaging by the Astrid microsatellite. <i>Advances in Space Research</i> , 1997 , 20, 105	5- <u>1.0</u> 60	43
74	ENA imaging from the Swedish micro satellite Astrid during the magnetic storm of 8 February, 1995. <i>Advances in Space Research</i> , 1997 , 20, 1061-1066	2.4	34
73	Introduction to Geomagnetically Trapped Radiation. <i>Eos</i> , 1996 , 77, 199	1.5	
72	Hot plasma parameters of Jupiter's inner magnetosphere. <i>Journal of Geophysical Research</i> , 1996 , 101, 7685-7695		43
71	Charged particle phase space densities in the magnetospheres of Uranus and Neptune. <i>Journal of Geophysical Research</i> , 1996 , 101, 10681-10693		3
70	Comprehensive analysis of electron observations at Saturn: Voyager 1 and 2. <i>Journal of Geophysical Research</i> , 1996 , 101, 15211-15232		37
69	Electron beams and ion composition measured at Io and in its torus. <i>Science</i> , 1996 , 274, 401-3	33.3	111
69 68	Electron beams and ion composition measured at Io and in its torus. <i>Science</i> , 1996 , 274, 401-3 Modeling nuclear thermal rocket plume effluents 1996 ,	33.3	111
		33.3	
68	Modeling nuclear thermal rocket plume effluents 1996 ,	7.5	2
68 67	Modeling nuclear thermal rocket plume effluents 1996 , Imaging-neutral camera (INCA) for the NASA Cassini mission to Saturn and Titan 1996 , 2803, 154 Latitudinal and radial variation of shock associated B0 keV ion spectra and anisotropies at		3
68 67 66	Modeling nuclear thermal rocket plume effluents 1996 , Imaging-neutral camera (INCA) for the NASA Cassini mission to Saturn and Titan 1996 , 2803, 154 Latitudinal and radial variation of shock associated B0 keV ion spectra and anisotropies at Voyagers 1 and 2. <i>Space Science Reviews</i> , 1995 , 72, 353-358 Aspects of Mesoscale Phenomena in the Middle Magnetosphere and Speculations on the Role of	7.5	3
68 67 66 65	Modeling nuclear thermal rocket plume effluents 1996, Imaging-neutral camera (INCA) for the NASA Cassini mission to Saturn and Titan 1996, 2803, 154 Latitudinal and radial variation of shock associated B0 keV ion spectra and anisotropies at Voyagers 1 and 2. Space Science Reviews, 1995, 72, 353-358 Aspects of Mesoscale Phenomena in the Middle Magnetosphere and Speculations on the Role of Microscale Processes. Geophysical Monograph Series, 1995, 201-211 Hot ions in Jupiter's magnetodisc: A model for Voyager 2 low-energy charged particle	7.5	3 6
68 67 66 65 64	Modeling nuclear thermal rocket plume effluents 1996, Imaging-neutral camera (INCA) for the NASA Cassini mission to Saturn and Titan 1996, 2803, 154 Latitudinal and radial variation of shock associated B0 keV ion spectra and anisotropies at Voyagers 1 and 2. Space Science Reviews, 1995, 72, 353-358 Aspects of Mesoscale Phenomena in the Middle Magnetosphere and Speculations on the Role of Microscale Processes. Geophysical Monograph Series, 1995, 201-211 Hot ions in Jupiter's magnetodisc: A model for Voyager 2 low-energy charged particle measurements. Journal of Geophysical Research, 1995, 100, 19473 Neptune's inner magnetosphere and aurora: Energetic particle constraints. Journal of Geophysical	7.5	2 3 6 58

60	Imaging neutral particle detector. International Journal of Remote Sensing, 1994, 8, 101-145		9
59	Low-altitude observations of the evolution of substorm injection boundaries. <i>Journal of Geophysical Research</i> , 1993 , 98, 5815-5838		20
58	Adiabatic vs. non-adiabatic particle distributions during convection surges. <i>Geophysical Research Letters</i> , 1993 , 20, 177-180	4.9	29
57	Magnetic field-aligned electrodynamics of AlfvE/ion cyclotron waves. <i>Journal of Geophysical Research</i> , 1993 , 98, 19435-19441		2
56	Modeling induced environments and spacecraft interactions for the Nuclear Electric Propulsion Space Test Program (NEPSTP) 1993 ,		1
55	Simulations of EUV and ENA magnetospheric images based on the Rice convection model 1993 ,		6
54	Instrument requirements for imaging the magnetosphere in extreme ultraviolet and energetic neutral atoms derived from computer-simulated images 1992 , 1744, 19		13
53	Comparative studies of planetary magnetospheres. <i>Eos</i> , 1992 , 73, 44-44	1.5	
52	A convected K distribution model for hot ions in the Jovian magnetodisc. <i>Geophysical Research Letters</i> , 1992 , 19, 1435-1438	4.9	34
51	Energetic ion phase space densities in Neptune's magnetosphere. <i>Icarus</i> , 1992 , 99, 420-429	3.8	13
50	Structure and dynamics of the Uranian magnetotail: Results from hot plasma and magnetic field observations. <i>Journal of Geophysical Research</i> , 1991 , 96, 11485		6
49	Pressure anisotropy and radial stress balance in the Jovian neutral sheet. <i>Journal of Geophysical Research</i> , 1991 , 96, 21135		37
48	The magnetosphere of Neptune: Hot plasmas and energetic particles. <i>Journal of Geophysical Research</i> , 1991 , 96, 19061		32
47	Global Auroral Morphology: Quadrennial Report to the I.U.G.G. on U.S. Contributions. <i>Reviews of Geophysics</i> , 1991 , 29, 1028-1038	23.1	3
46	Hot plasma parameters in Neptune's magnetosphere. <i>Geophysical Research Letters</i> , 1990 , 17, 1685-168	84.9	15
45	Energetic charged particle angular distributions near (r IZ RN) and over the pole of Neptune. <i>Geophysical Research Letters</i> , 1990 , 17, 1701-1704	4.9	14
44	Ion phase space densities in the Jovian magnetosphere. Journal of Geophysical Research, 1990, 95, 2083	33	7
43	Hot Plasma and Energetic Particles in Neptune's Magnetosphere. <i>Science</i> , 1989 , 246, 1483-9	33.3	88

42	Plasma waves in the magnetotail of Uranus. <i>Journal of Geophysical Research</i> , 1989 , 94, 3505		7
41	Generation of macroscopic magnetic-field-aligned electric fields by the convection surge ion acceleration mechanism. <i>Journal of Geophysical Research</i> , 1989 , 94, 8911		30
40	Observations of energetic ion enhancements and fast neutrals upstream and downstream of Uranus' bow shock by the Voyager 2 spacecraft. <i>Planetary and Space Science</i> , 1988 , 36, 311-328	2	21
39	Plasma Injection During Substorms. <i>Physica Scripta</i> , 1987 , T18, 128-139	2.6	36
38	Radial force balance within Jupiter's dayside magnetosphere. <i>Journal of Geophysical Research</i> , 1987 , 92, 9931		43
37	Detection of a hot plasma component within the core regions of Jupiter's distant magnetotail. Journal of Geophysical Research, 1987 , 92, 9943		11
36	The hot plasma and radiation environment of the Uranian magnetosphere. <i>Journal of Geophysical Research</i> , 1987 , 92, 15283		95
35	Energetic ion and electron phase space densities in the magnetosphere of Uranus. <i>Journal of Geophysical Research</i> , 1987 , 92, 15315		42
34	The magnetotail of Uranus. Journal of Geophysical Research, 1987, 92, 15354		34
33	Magnetospheric electric fields and currents. <i>Reviews of Geophysics</i> , 1987 , 25, 541	23.1	50
33	Magnetospheric electric fields and currents. <i>Reviews of Geophysics</i> , 1987 , 25, 541 The magnetosphere of uranus: hot plasma and radiation environment. <i>Science</i> , 1986 , 233, 97-102	23.1 33·3	50
32	The magnetosphere of uranus: hot plasma and radiation environment. <i>Science</i> , 1986 , 233, 97-102 Comment on Heating of thermal helium in the equatorial magnetosphere: A simulation studylby		
32	The magnetosphere of uranus: hot plasma and radiation environment. <i>Science</i> , 1986 , 233, 97-102 Comment on Heating of thermal helium in the equatorial magnetosphere: A simulation studylby Y. Omura, M. Ashour-Abdalla, R. Gendrin, and K. Quest. <i>Journal of Geophysical Research</i> , 1986 , 91, 4590 Quantitative modeling of the Bonvection surgel mechanism of ion acceleration. <i>Journal of</i>		82
32 31 30	The magnetosphere of uranus: hot plasma and radiation environment. <i>Science</i> , 1986 , 233, 97-102 Comment on Heating of thermal helium in the equatorial magnetosphere: A simulation studylby Y. Omura, M. Ashour-Abdalla, R. Gendrin, and K. Quest. <i>Journal of Geophysical Research</i> , 1986 , 91, 4590 Quantitative modeling of the Bonvection surgelinechanism of ion acceleration. <i>Journal of Geophysical Research</i> , 1986 , 91, 13423 lon and electron energy dispersion features detected by ISEE 1. <i>Journal of Geophysical Research</i> ,		82 2 96
32 31 30 29	The magnetosphere of uranus: hot plasma and radiation environment. <i>Science</i> , 1986 , 233, 97-102 Comment on Eleating of thermal helium in the equatorial magnetosphere: A simulation studyIby Y. Omura, M. Ashour-Abdalla, R. Gendrin, and K. Quest. <i>Journal of Geophysical Research</i> , 1986 , 91, 4590 Quantitative modeling of the Elonvection surgetmechanism of ion acceleration. <i>Journal of Geophysical Research</i> , 1986 , 91, 13423 Ion and electron energy dispersion features detected by ISEE 1. <i>Journal of Geophysical Research</i> , 1985 , 90, 4079 Particle and field stress balance within a planetary magnetosphere. <i>Journal of Geophysical Research</i> ,		82 2 96 21
32 31 30 29 28	The magnetosphere of uranus: hot plasma and radiation environment. <i>Science</i> , 1986 , 233, 97-102 Comment on Eleating of thermal helium in the equatorial magnetosphere: A simulation study by Y. Omura, M. Ashour-Abdalla, R. Gendrin, and K. Quest. <i>Journal of Geophysical Research</i> , 1986 , 91, 4590 Quantitative modeling of the Bonvection surgel mechanism of ion acceleration. <i>Journal of Geophysical Research</i> , 1986 , 91, 13423 lon and electron energy dispersion features detected by ISEE 1. <i>Journal of Geophysical Research</i> , 1985 , 90, 4079 Particle and field stress balance within a planetary magnetosphere. <i>Journal of Geophysical Research</i> , 1985 , 90, 8253 Low-frequency waves and associated energetic ions downstream of Saturn. <i>Journal of Geophysical</i>		82 2 96 21 33

24	Characterization of geostationary particle signatures based on the Injection Boundary IModel. Journal of Geophysical Research, 1983 , 88, 3055		113
23	Corotation anisotropies in Saturn's magnetosphere. <i>Journal of Geophysical Research</i> , 1983 , 88, 8937-8946		17
22	Upstream gyrophase bunched ions: A mechanism for creation at the bow shook and the growth of velocity space structure through gyrophase mixing. <i>Journal of Geophysical Research</i> , 1983 , 88, 9093-9100		40
21	Dynamical injections as the source of near geostationary quiet time particle spatial boundaries. Journal of Geophysical Research, 1983 , 88, 10011		45
20	Electromagnetic wave energization of heavy ions by the electric phase bunching process. Geophysical Research Letters, 1982, 9, 1163-1166	9	45
19	Helium resonance and dispersion effects on geostationary Alfven/ion cyclotron waves. <i>Journal of Geophysical Research</i> , 1982 , 87, 9107		84
18	Helium cyclotron resonance within the Earth's magnetosphere. <i>Geophysical Research Letters</i> , 1981 , 8, 103-106	9	100
17	X-ray enhancements detected during thunderstorm and lightning activities. <i>Geophysical Research Letters</i> , 1981 , 8, 1176-1179	ļ.9	103
16	Upstream particle spatial gradients and plasma waves. Journal of Geophysical Research, 1981, 86, 4343-43	54	43
15	Non-E IB ordered ion beams upstream of the Earth's bow shock. <i>Journal of Geophysical Research</i> , 1981 , 86, 4415-4424		76
14	Auroral X ray images. <i>Journal of Geophysical Research</i> , 1981 , 86, 6827		24
13	An experimental test of the electromagnetic ion cyclotron instability within the earth magnetosphere. <i>Physics of Fluids</i> , 1980 , 23, 2111		136
12	A compressional Pc4 pulsation observed by three satellites in geostationary orbit near local midnight. <i>Planetary and Space Science</i> , 1979 , 27, 821-840		78
11	Plasma injection and diamagnetism. Journal of Geophysical Research, 1979, 84, 2049		19
10	Electron precipitation of evening diffuse aurora and its conjugate electron fluxes near the magnetospheric equator. <i>Journal of Geophysical Research</i> , 1979 , 84, 2545		103
9	Temperature characteristics of electron beams and ambient particles. <i>Journal of Geophysical Research</i> , 1979 , 84, 2651		18
8	Observations of Plasma Injection. <i>Astrophysics and Space Science Library</i> , 1979 , 371-383).3	5
7	Alfvli waves generated by an inverted plasma energy distribution. <i>Nature</i> , 1978 , 275, 43-45	0.4	103

LIST OF PUBLICATIONS

6	Characteristics of magnetospheric particle injection deduced from events observed on August 18, 1974. <i>Journal of Geophysical Research</i> , 1977 , 82, 5208-5214		32
5	ATS-6 - UCSD AURORAL PARTICLES EXPERIMENT. <i>IEEE Transactions on Aerospace and Electronic Systems</i> , 1975 , AES-11, 1125-1130	3.7	82
4	Correlation of Kp with the substorm-injected plasma boundary. <i>Journal of Geophysical Research</i> , 1974 , 79, 3193-3196		177
3	Statistics on Jupiter's Current Sheet with Juno Data: Geometry, Magnetic Fields and Energetic Particles. <i>Journal of Geophysical Research: Space Physics</i> ,	2.6	2
2	Can Earth magnetotail plasma sheet produce a source of relativistic electrons for the radiation belts?. <i>Geophysical Research Letters</i> ,e2021GL095495	4.9	2
1	Closed Fluxtubes and Dispersive Proton Conics at Jupiter Polar Cap. <i>Geophysical Research Letters</i> ,	4.9	1