Rosalind J Sadleir

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2293387/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Transcranial direct current stimulation (tDCS) in a realistic head model. NeuroImage, 2010, 51, 1310-1318.	4.2	224
2	Biocompatible, High Precision, Wideband, Improved Howland Current Source With Lead-Lag Compensation. IEEE Transactions on Biomedical Circuits and Systems, 2013, 7, 63-70.	4.0	95
3	Noise analysis in magnetic resonance electrical impedance tomography at 3 and 11 T field strengths. Physiological Measurement, 2005, 26, 875-884.	2.1	92
4	Target Optimization in Transcranial Direct Current Stimulation. Frontiers in Psychiatry, 2012, 3, 90.	2.6	80
5	Low-Frequency Conductivity Tensor Imaging of the Human Head <italic>In Vivo</italic> Using DT-MREIT: First Study. IEEE Transactions on Medical Imaging, 2018, 37, 966-976.	8.9	43
6	Imaging of current flow in the human head during transcranial electrical therapy. Brain Stimulation, 2017, 10, 764-772.	1.6	42
7	High field MREIT: setup and tissue phantom imaging at 11 T. Physiological Measurement, 2006, 27, S261-S270.	2.1	23
8	Quantification of blood volume by electrical impedance tomography using a tissue-equivalent phantom. Physiological Measurement, 1998, 19, 501-516.	2.1	22
9	Changing head model extent affects finite element predictions of transcranial direct current stimulation distributions. Journal of Neural Engineering, 2016, 13, 066006.	3.5	22
10	A Controllably Anisotropic Conductivity or Diffusion Phantom Constructed from Isotropic Layers. Annals of Biomedical Engineering, 2009, 37, 2522-2531.	2.5	18
11	Flexible electrode belt for EIT using nanofiber web dry electrodes. Physiological Measurement, 2012, 33, 1603-1616.	2.1	18
12	In vivoquantification of intraventricular hemorrhage in a neonatal piglet model using an EEG-layout based electrical impedance tomography array. Physiological Measurement, 2016, 37, 751-764.	2.1	16
13	Simulations and phantom evaluations of magnetic resonance electrical impedance tomography (MREIT) for breast cancer detection. Journal of Magnetic Resonance, 2013, 230, 40-49.	2.1	15
14	The conductivity of neonatal piglet skulls. Physiological Measurement, 2011, 32, 1275-1283.	2.1	13
15	Multishot echoâ€planar MREIT for fast imaging of conductivity, current density, and electric field distributions. Magnetic Resonance in Medicine, 2018, 79, 71-82.	3.0	13
16	Benchmarking transcranial electrical stimulation finite element models: a comparison study. Journal of Neural Engineering, 2019, 16, 026019.	3.5	13
17	Direct detection of neural activity in vitro using magnetic resonance electrical impedance tomography (MREIT). NeuroImage, 2017, 161, 104-119.	4.2	12
18	Methods to Compare Predicted and Observed Phosphene Experience in tACS Subjects. Neural Plasticity, 2018, 2018, 1-10	2.2	11

ROSALIND J SADLEIR

#	Article	IF	CITATIONS
19	Magnetic-resonance-based measurement of electromagnetic fields and conductivity in vivo using single current administration—A machine learning approach. PLoS ONE, 2021, 16, e0254690.	2.5	9
20	Accelerating acquisition strategies for low-frequency conductivity imaging using MREIT. Physics in Medicine and Biology, 2018, 63, 045011.	3.0	7
21	Functional magnetic resonance electrical impedance tomography (f <scp>MREIT</scp>) sensitivity analysis using an active bidomain finiteâ€element model of neural tissue. Magnetic Resonance in Medicine, 2019, 81, 602-614.	3.0	7
22	Development and testing of implanted carbon electrodes for electromagnetic field mapping during neuromodulation. Magnetic Resonance in Medicine, 2020, 84, 2103-2116.	3.0	7
23	Advances in electrical impedance tomography and bioimpedance including applications in COVID-19 diagnosis and treatment. Physiological Measurement, 2022, 43, 020401.	2.1	5
24	Evaluation of magnetohydrodynamic effects in magnetic resonance electrical impedance tomography at ultraâ€high magnetic fields. Magnetic Resonance in Medicine, 2019, 81, 2264-2276.	3.0	4
25	Analytic Modeling of Neural Tissue: I. A Spherical Bidomain. Journal of Mathematical Neuroscience, 2016, 6, 9.	2.4	3
26	Analysis of bipolar external excitation of spherical tissue by spatially opposed current source and sink points. , 2015, 2015, 2299-302.		2
27	Analytic modeling of conductively anisotropic neural tissue. Journal of Applied Physics, 2018, 124, 064701.	2.5	2
28	Low frequency conductivity reconstruction based on a single current injection via MREIT. Physics in Medicine and Biology, 2020, 65, 225016.	3.0	2
29	Projected current density comparison in tDCS block and smooth FE modeling. , 2016, 2016, 4079-4082.		1
30	The effect of potassium chloride on Aplysia Californica abdominal ganglion activity. Biomedical Physics and Engineering Express, 2018, 4, 035033.	1.2	1
31	Design of anisotropic phantoms for use in electrical conductivity imaging and modeling. , 2007, , .		0
32	Four-channel current switching device to enable multi-electrode magnetic resonance current density imaging. , 2021, 2021, 4068-4071.		0
33	Influence of Transcranial Electrical Stimulation (TES) waveforms on neural excitability of a realistic axon: a simulation study. , 2021, 2021, 6725-6727.		0