Siling Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2293246/publications.pdf

Version: 2024-02-01

66343 76900 5,940 99 42 74 citations h-index g-index papers 103 103 103 7230 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Cancerâ€Cellâ€Biomimetic Nanoparticles for Targeted Therapy of Homotypic Tumors. Advanced Materials, 2016, 28, 9581-9588.	21.0	458
2	Tumor Microenvironmentâ€Activatable Prodrug Vesicles for Nanoenabled Cancer Chemoimmunotherapy Combining Immunogenic Cell Death Induction and CD47 Blockade. Advanced Materials, 2019, 31, e1805888.	21.0	374
3	Spherical mesoporous silica nanoparticles for loading and release of the poorly water-soluble drug telmisartan. Journal of Controlled Release, 2010, 145, 257-263.	9.9	366
4	Cancer Cell Membrane-Coated Gold Nanocages with Hyperthermia-Triggered Drug Release and Homotypic Target Inhibit Growth and Metastasis of Breast Cancer. Advanced Functional Materials, 2017, 27, 1604300.	14.9	281
5	pH―and NIR Lightâ€Responsive Micelles with Hyperthermiaâ€Triggered Tumor Penetration and Cytoplasm Drug Release to Reverse Doxorubicin Resistance in Breast Cancer. Advanced Functional Materials, 2015, 25, 2489-2500.	14.9	218
6	Dual-stimuli responsive hyaluronic acid-conjugated mesoporous silica for targeted delivery to CD44-overexpressing cancer cells. Acta Biomaterialia, 2015, 23, 147-156.	8.3	196
7	Mesoporous Silica Nanoparticles for Increasing the Oral Bioavailability and Permeation of Poorly Water Soluble Drugs. Molecular Pharmaceutics, 2012, 9, 505-513.	4.6	173
8	A comparison between sphere and rod nanoparticles regarding their in vivo biological behavior and pharmacokinetics. Scientific Reports, 2017, 7, 4131.	3.3	168
9	Polydopamine-coated mesoporous silica nanoparticles for multi-responsive drug delivery and combined chemo-photothermal therapy. Materials Science and Engineering C, 2019, 105, 110103.	7.3	138
10	Mesoporous carbon nanomaterials in drug delivery and biomedical application. Drug Delivery, 2017, 24, 94-107.	5.7	130
11	Hyaluronic Acid Oligosaccharide Modified Redox-Responsive Mesoporous Silica Nanoparticles for Targeted Drug Delivery. ACS Applied Materials & Interfaces, 2014, 6, 20290-20299.	8.0	129
12	Cisplatin Prodrug-Conjugated Gold Nanocluster for Fluorescence Imaging and Targeted Therapy of the Breast Cancer. Theranostics, 2016, 6, 679-687.	10.0	112
13	Redox and pH dual-responsive PEG and chitosan-conjugated hollow mesoporous silica for controlled drug release. Materials Science and Engineering C, 2016, 67, 26-33.	7.3	108
14	Hybrid Lipid-Capped Mesoporous Silica for Stimuli-Responsive Drug Release and Overcoming Multidrug Resistance. ACS Applied Materials & Samp; Interfaces, 2015, 7, 3342-3351.	8.0	104
15	Hyaluronic acid and carbon dots-gated hollow mesoporous silica for redox and enzyme-triggered targeted drug delivery and bioimaging. Materials Science and Engineering C, 2017, 78, 475-484.	7.3	99
16	Novel Chitosan-Functionalized Spherical Nanosilica Matrix As an Oral Sustained Drug Delivery System for Poorly Water-Soluble Drug Carvedilol. ACS Applied Materials & Samp; Interfaces, 2013, 5, 103-113.	8.0	93
17	Bioinspired lipoproteins-mediated photothermia remodels tumor stroma to improve cancer cell accessibility of second nanoparticles. Nature Communications, 2019, 10, 3322.	12.8	91
18	Advances in smart mesoporous carbon nanoplatforms for photothermal–enhanced synergistic cancer therapy. Chemical Engineering Journal, 2022, 435, 134886.	12.7	90

#	Article	IF	Citations
19	Recent trends of mesoporous silica-based nanoplatforms for nanodynamic therapies. Coordination Chemistry Reviews, 2022, 469, 214687.	18.8	89
20	Gold nanoparticle-gated mesoporous silica as redox-triggered drug delivery for chemo-photothermal synergistic therapy. Journal of Colloid and Interface Science, 2017, 508, 323-331.	9.4	82
21	Programmed Multiresponsive Vesicles for Enhanced Tumor Penetration and Combination Therapy of Tripleâ€Negative Breast Cancer. Advanced Functional Materials, 2017, 27, 1606530.	14.9	80
22	Current trends in smart mesoporous silica-based nanovehicles for photoactivated cancer therapy. Journal of Controlled Release, 2021, 339, 445-472.	9.9	78
23	Inclusion of telmisartan in mesocellular foam nanoparticles: Drug loading and release property. European Journal of Pharmaceutics and Biopharmaceutics, 2010, 76, 17-23.	4.3	7 5
24	Fluorescent carbon dot modified mesoporous silica nanocarriers for redox-responsive controlled drug delivery and bioimaging. Journal of Colloid and Interface Science, 2016, 483, 343-352.	9.4	73
25	Theranostic Prodrug Vesicles for Reactive Oxygen Speciesâ€Triggered Ultrafast Drug Release and Localâ€Regional Therapy of Metastatic Tripleâ€Negative Breast Cancer. Advanced Functional Materials, 2017, 27, 1703674.	14.9	73
26	Enhanced Oral Delivery of Paclitaxel Using Acetylcysteine Functionalized Chitosan-Vitamin E Succinate Nanomicelles Based on a Mucus Bioadhesion and Penetration Mechanism. Molecular Pharmaceutics, 2013, 10, 3447-3458.	4.6	72
27	Thermosensitive Lipid Bilayer-Coated Mesoporous Carbon Nanoparticles for Synergistic Thermochemotherapy of Tumor. ACS Applied Materials & Samp; Interfaces, 2018, 10, 19386-19397.	8.0	61
28	Zwitterion-functionalized mesoporous silica nanoparticles for enhancing oral delivery of protein drugs by overcoming multiple gastrointestinal barriers. Journal of Colloid and Interface Science, 2021, 582, 364-375.	9.4	61
29	Multilayer encapsulated mesoporous silica nanospheres as an oral sustained drug delivery system for the poorly water-soluble drug felodipine. Materials Science and Engineering C, 2015, 47, 313-324.	7.3	59
30	Mesoporous carbon as a novel drug carrier of fenofibrate for enhancement of the dissolution and oral bioavailability. International Journal of Pharmaceutics, 2013, 452, 382-389.	5.2	57
31	Incorporation of indomethacin nanoparticles into 3-D ordered macroporous silica for enhanced dissolution and reduced gastric irritancy. European Journal of Pharmaceutics and Biopharmaceutics, 2011, 79, 544-551.	4.3	56
32	PEGylated mesoporous silica as a redox-responsive drug delivery system for loading thiol-containing drugs. International Journal of Pharmaceutics, 2014, 477, 613-622.	5.2	53
33	Hollow mesoporous silica as a high drug loading carrier for regulation insoluble drug release. International Journal of Pharmaceutics, 2016, 510, 184-194.	5.2	53
34	Facile synthesis of the lipid bilayer coated mesoporous silica nanocomposites and their application in drug delivery. Microporous and Mesoporous Materials, 2016, 219, 209-218.	4.4	53
35	Preparation and evaluation of anti-neuroexcitation peptide (ANEP) loaded N-trimethyl chitosan chloride nanoparticles for brain-targeting. International Journal of Pharmaceutics, 2010, 386, 249-255.	5.2	52
36	Triple stimuli-responsive ZnO quantum dots-conjugated hollow mesoporous carbon nanoplatform for NIR-induced dual model antitumor therapy. Journal of Colloid and Interface Science, 2020, 559, 51-64.	9.4	52

3

#	Article	IF	Citations
37	Multi-stimuli responsive mesoporous silica-coated carbon nanoparticles for chemo-photothermal therapy of tumor. Colloids and Surfaces B: Biointerfaces, 2020, 190, 110941.	5.0	52
38	Effects of surface modification and size on oral drug delivery of mesoporous silica formulation. Journal of Colloid and Interface Science, 2018, 513, 736-747.	9.4	50
39	Overcoming multiple gastrointestinal barriers by bilayer modified hollow mesoporous silica nanocarriers. Acta Biomaterialia, 2018, 65, 405-416.	8.3	47
40	Mesoporous carbon‑manganese nanocomposite for multiple imaging guided oxygen-elevated synergetic therapy. Journal of Controlled Release, 2020, 319, 104-118.	9.9	47
41	Multi-stimuli responsive nanosystem modified by tumor-targeted carbon dots for chemophototherapy synergistic therapy. Journal of Colloid and Interface Science, 2019, 552, 639-650.	9.4	45
42	Gold nanoparticles modified hollow carbon system for dual-responsive release and chemo-photothermal synergistic therapy of tumor. Journal of Colloid and Interface Science, 2019, 554, 239-249.	9.4	42
43	Versatile hybrid polyethyleneimine–mesoporous carbon nanoparticles for targeted delivery. Carbon, 2014, 79, 123-134.	10.3	40
44	Folate-polyethyleneimine functionalized mesoporous carbon nanoparticles for enhancing oral bioavailability of paclitaxel. International Journal of Pharmaceutics, 2015, 484, 207-217.	5.2	40
45	Polyion complex micelles composed of pegylated polyasparthydrazide derivatives for siRNA delivery to the brain. Journal of Colloid and Interface Science, 2015, 447, 8-15.	9.4	39
46	Hollow mesoporous carbon as a near-infrared absorbing carrier compared with mesoporous carbon nanoparticles for chemo-photothermal therapy. Journal of Colloid and Interface Science, 2017, 494, 159-169.	9.4	39
47	Chylomicron-pretended nano-bio self-assembling vehicle to promote lymphatic transport and GALTs target of oral drugs. Biomaterials, 2019, 188, 173-186.	11.4	39
48	Fluorescent carbon dot-gated multifunctional mesoporous silica nanocarriers for redox/enzyme dual-responsive targeted and controlled drug delivery and real-time bioimaging. European Journal of Pharmaceutics and Biopharmaceutics, 2017, 117, 105-115.	4.3	37
49	Biomimetic smart mesoporous carbon nanozyme as a dual-GSH depletion agent and O2 generator for enhanced photodynamic therapy. Acta Biomaterialia, 2022, 148, 310-322.	8.3	36
50	A biomimetic nanocomposite made of a ginger-derived exosome and an inorganic framework for high-performance delivery of oral antibodies. Nanoscale, 2021, 13, 20157-20169.	5.6	35
51	Size effect on oral absorption in polymer-functionalized mesoporous carbon nanoparticles. Journal of Colloid and Interface Science, 2018, 511, 57-66.	9.4	34
52	Development of novel mesoporous nanomatrix-supported lipid bilayers for oral sustained delivery of the water-insoluble drug, lovastatin. Colloids and Surfaces B: Biointerfaces, 2015, 128, 77-85.	5.0	33
53	Polydopamine-carbon dots functionalized hollow carbon nanoplatform for fluorescence-imaging and photothermal-enhanced thermochemotherapy. Materials Science and Engineering C, 2021, 122, 111908.	7.3	31
54	Mechanism study on pH-responsive cyclodextrin capped mesoporous silica: effect of different stalk densities and the type of cyclodextrin. Nanotechnology, 2015, 26, 165704.	2.6	29

#	Article	IF	CITATIONS
55	Poly(acrylic acid) conjugated hollow mesoporous carbon as a dual-stimuli triggered drug delivery system for chemo-photothermal synergistic therapy. Materials Science and Engineering C, 2017, 71, 594-603.	7.3	29
56	Targeting peptide-decorated biomimetic lipoproteins improve deep penetration and cancer cells accessibility in solid tumor. Acta Pharmaceutica Sinica B, 2020, 10, 529-545.	12.0	29
57	A versatile gas-generator promoting drug release and oxygen replenishment for amplifying photodynamic-chemotherapy synergetic anti-tumor effects. Biomaterials, 2021, 276, 120985.	11.4	28
58	Redox and pH dual-responsive mesoporous silica nanoparticles for site-specific drug delivery. Applied Surface Science, 2015, 356, 1282-1288.	6.1	27
59	Bioavailability and anticataract effects of a topical ocular drug delivery system containing disulfiram and hydroxypropyl-beta-cyclodextrin on selenite-treated rats. Current Eye Research, 2004, 29, 51-58.	1.5	26
60	Inhibition of Breast Cancer Metastasis by Pluronic Copolymers with Moderate Hydrophilic–Lipophilic Balance. Molecular Pharmaceutics, 2015, 12, 3323-3331.	4.6	26
61	"Gate―engineered mesoporous silica nanoparticles for a double inhibition of drug efflux and particle exocytosis to enhance antitumor activity. Journal of Colloid and Interface Science, 2019, 535, 380-391.	9.4	25
62	An ocular drug delivery system containing zinc diethyldithiocarbamate and HPÎ ² CD inclusion complex - corneal permeability, anti-cataract effects and mechanism studies. Journal of Pharmacy and Pharmacology, 2010, 56, 1251-1257.	2.4	23
63	Fluorescent carbon dot gated hollow mesoporous carbon for chemo-photothermal synergistic therapy. Journal of Colloid and Interface Science, 2017, 507, 410-420.	9.4	23
64	Multi-stimuli responsive mesoporous carbon nano-platform gated by human serum albumin for cancer thermo-chemotherapy. Colloids and Surfaces B: Biointerfaces, 2019, 184, 110532.	5.0	23
65	Polymer-functionalized mesoporous carbon nanoparticles on overcoming multiple barriers and improving oral bioavailability of Probucol. Carbohydrate Polymers, 2020, 229, 115508.	10.2	23
66	Octa-arginine modified lipid emulsions as a potential ocular delivery system for disulfiram: A study of the corneal permeation, transcorneal mechanism and anti-cataract effect. Colloids and Surfaces B: Biointerfaces, 2017, 160, 305-314.	5.0	22
67	Mesoporous carbon with spherical pores as a carrier for celecoxib with needle-like crystallinity: Improve dissolution rate and bioavailability. Materials Science and Engineering C, 2014, 39, 13-20.	7.3	21
68	Poly dimethyl diallyl ammonium coated CMK-5 for sustained oral drug release. International Journal of Pharmaceutics, 2014, 461, 171-180.	5.2	21
69	The advantage of hollow mesoporous carbon as a near-infrared absorbing drug carrier in chemo-photothermal therapy compared with IR-820. European Journal of Pharmaceutical Sciences, 2017, 99, 66-74.	4.0	21
70	Mesoporous Carbon Nanoparticles as Multi-functional Carriers for Cancer Therapy Compared with Mesoporous Silica Nanoparticles. AAPS PharmSciTech, 2020, 21, 42.	3.3	19
71	Three dimensional mesoporous carbon nanospheres as carriers for chemo-photothermal therapy compared with two dimensional graphene oxide nanosheets. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, 590, 124498.	4.7	19
72	Bioinspired Lipoproteins of Furoxans–Oxaliplatin Remodel Physical Barriers in Tumor to Potentiate Tâ€Cell Infiltration. Advanced Materials, 2022, 34, e2110614.	21.0	19

#	Article	IF	CITATIONS
73	Approaches and materials for endocytosis-independent intracellular delivery of proteins. Biomaterials, 2022, 286, 121567.	11.4	19
74	M2 macrophage microvesicle-inspired nanovehicles improve accessibility to cancer cells and cancer stem cells in tumors. Journal of Nanobiotechnology, 2021, 19, 397.	9.1	17
75	Development of synthetic high-density lipoprotein-based ApoA-I mimetic peptide-loaded docetaxel as a drug delivery nanocarrier for breast cancer chemotherapy. Drug Delivery, 2019, 26, 708-716.	5.7	16
76	Protective properties of mesocellular silica foams against aggregation and enzymatic hydrolysis of loaded proteins for oral protein delivery. Journal of Colloid and Interface Science, 2020, 560, 690-700.	9.4	16
77	Development of a novel starch-derived porous silica monolith for enhancing the dissolution rate of poorly water soluble drug. Materials Science and Engineering C, 2012, 32, 201-206.	7.3	15
78	Improved dissolution and oral absorption by co-grinding active drug probucol and ternary stabilizers mixtures with planetary beads-milling method. Asian Journal of Pharmaceutical Sciences, 2019, 14, 649-657.	9.1	15
79	A Eu3+/Gd3+-EDTA-doped structurally controllable hollow mesoporous carbon for improving the oral bioavailability of insoluble drugs andin vivotracing. Nanotechnology, 2016, 27, 315101.	2.6	14
80	MSNCs and MgO-MSNCs as drug delivery systems to control the adsorption kinetics and release rate of indometacin. Asian Journal of Pharmaceutical Sciences, 2019, 14, 275-286.	9.1	14
81	Photo-responsive prodrug nanoparticles for efficient cytoplasmic delivery and synergistic photodynamic-chemotherapy of metastatic triple-negative breast cancer. Acta Biomaterialia, 2021, 126, 421-432.	8.3	14
82	A geometric pore adsorption model for predicting the drug loading capacity of insoluble drugs in mesoporous carbon. International Journal of Pharmaceutics, 2015, 485, 25-30.	5.2	13
83	A novel nanogel delivery of poly- \hat{l}_{\pm} , \hat{l}^2 -polyasparthydrazide by reverse microemulsion and its redox-responsive release of 5-Fluorouridine. Asian Journal of Pharmaceutical Sciences, 2016, 11, 735-743.	9.1	13
84	Dissecting extracellular and intracellular distribution of nanoparticles and their contribution to therapeutic response by monochromatic ratiometric imaging. Nature Communications, 2022, 13, 2004.	12.8	13
85	Investigation of 3-D ordered materials with a high adsorption capacity for BSA and their potential application as an oral vaccine adjuvant. Journal of Colloid and Interface Science, 2014, 434, 113-121.	9.4	12
86	A mutually beneficial macrophages-mediated delivery system realizing photo/immune therapy. Journal of Controlled Release, 2022, 347, 14-26.	9.9	11
87	Magnetic mesoporous silica nanoparticles mediated redox and pH dual-responsive target drug delivery for combined magnetothermal therapy and chemotherapy. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 648, 129359.	4.7	11
88	Composite phospholipid-coated hollow mesoporous silica nanoplatform with multi-stimuli responsiveness for combined chemo-photothermal therapy. Journal of Materials Science, 2020, 55, 5230-5246.	3.7	10
89	Freeze-dried liposomes as potential carriers for ocular administration of cytochrome c against selenite cataract formation. Journal of Pharmacy and Pharmacology, 2010, 61, 1171-1178.	2.4	9
90	Investigation of 3D ordered macroporous carbon with different polymer coatings and their application as an oral vaccine carrier. International Journal of Pharmaceutics, 2015, 487, 234-241.	5.2	9

#	Article	IF	CITATIONS
91	Gold nanoparticles gated mesoporous carbon with optimal particle size for photothermal-enhanced thermochemotherapy. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, 603, 125212.	4.7	9
92	Apoferritin nanocages loading mertansine enable effective eradiation of cancer stem-like cells in vitro. International Journal of Pharmaceutics, 2018, 553, 201-209.	5.2	8
93	Designed construction of tween $60@2\hat{l}^2$ -CD self-assembly vesicles as drug delivery carrier for cancer chemotherapy. Drug Delivery, 2018, 25, 623-631.	5.7	7
94	Thiolated polymer and Cell-Penetrating Peptide dual-surface functionalization of mesoporous silicon nanoparticles to overcome intestinal barriers. Journal of Drug Delivery Science and Technology, 2019, 53, 101184.	3.0	7
95	Au Catalyzing Control Release NO in vivo and Tumor Growth-Inhibiting Effect in Chemo-Photothermal Combination Therapy. International Journal of Nanomedicine, 2021, Volume 16, 2501-2513.	6.7	7
96	TPGS and cypate gated mesoporous carbon for enhanced thermochemotherapy of tumor. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, 591, 124544.	4.7	5
97	Succinylated casein functionalized mesoporous silica nanoplatforms to overcome multiple gastrointestinal barriers. Journal of Drug Delivery Science and Technology, 2020, 60, 102068.	3.0	2
98	Permeability and Anticataract Effects of a Topical Ocular Drug Delivery System of Disulfiram. , 2008, , .		1
99	Cancer Therapy: Programmed Multiresponsive Vesicles for Enhanced Tumor Penetration and Combination Therapy of Tripleâ€Negative Breast Cancer (Adv. Funct. Mater. 20/2017). Advanced Functional Materials, 2017, 27, .	14.9	0