
Louise Dyson

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2293042/publications.pdf Version: 2024-02-01

LOUISE DYSON

#	Article	IF	CITATIONS
1	Fitting to the UK COVID-19 outbreak, short-term forecasts and estimating the reproductive number. Statistical Methods in Medical Research, 2022, 31, 1716-1737.	0.7	22
2	Quantifying pupil-to-pupil SARS-CoV-2 transmission and the impact of lateral flow testing in English secondary schools. Nature Communications, 2022, 13, 1106.	5.8	24
3	Modelling results on the impact of COVID-19 testing in schools. Lancet Infectious Diseases, The, 2022, 22, 915-916.	4.6	1
4	Assessing the impact of lateral flow testing strategies on within-school SARS-CoV-2 transmission and absences: A modelling study. PLoS Computational Biology, 2022, 18, e1010158.	1.5	11
5	Predictions of COVID-19 dynamics in the UK: Short-term forecasting and analysis of potential exit strategies. PLoS Computational Biology, 2021, 17, e1008619.	1.5	87
6	Risk of mortality in patients infected with SARS-CoV-2 variant of concern 202012/1: matched cohort study. BMJ, The, 2021, 372, n579.	3.0	648
7	A generation of junior faculty is at risk from the impacts of COVID-19. PLoS Biology, 2021, 19, e3001266.	2.6	6
8	Modelling optimal vaccination strategy for SARS-CoV-2 in the UK. PLoS Computational Biology, 2021, 17, e1008849.	1.5	142
9	The impact of school reopening on the spread of COVID-19 in England. Philosophical Transactions of the Royal Society B: Biological Sciences, 2021, 376, 20200261.	1.8	41
10	A network modelling approach to assess non-pharmaceutical disease controls in a worker population: An application to SARS-CoV-2. PLoS Computational Biology, 2021, 17, e1009058.	1.5	12
11	An analysis of school absences in England during the COVID-19 pandemic. BMC Medicine, 2021, 19, 137.	2.3	17
12	Vaccination and non-pharmaceutical interventions for COVID-19: a mathematical modelling study. Lancet Infectious Diseases, The, 2021, 21, 793-802.	4.6	453
13	How modelling can help steer the course set by the World Health Organization 2021-2030 roadmap on neglected tropical diseases. Gates Open Research, 2021, 5, 112.	2.0	4
14	SARS-CoV-2 infection in UK university students: lessons from September–December 2020 and modelling insights for future student return. Royal Society Open Science, 2021, 8, 210310.	1.1	15
15	Early warning signals of infectious disease transitions: a review. Journal of the Royal Society Interface, 2021, 18, 20210555.	1.5	17
16	Modelling SARS-CoV-2 transmission in a UK university setting. Epidemics, 2021, 36, 100476.	1.5	17
17	Possible future waves of SARS-CoV-2 infection generated by variants of concern with a range of characteristics. Nature Communications, 2021, 12, 5730.	5.8	90
18	The risk of SARS-CoV-2 outbreaks in low prevalence settings following the removal of travel restrictions. Communications Medicine, 2021, 1, .	1.9	12

LOUISE DYSON

#	Article	IF	CITATIONS
19	Approximating Steady State Distributions for Household Structured Epidemic Models. Journal of Theoretical Biology, 2021, 534, 110974.	0.8	0
20	Precautionary breaks: Planned, limited duration circuit breaks to control the prevalence of SARS-CoV2 and the burden of COVID-19 disease. Epidemics, 2021, 37, 100526.	1.5	8
21	Modeling Treatment Strategies to Inform Yaws Eradication. Emerging Infectious Diseases, 2020, 26, 2685-2693.	2.0	8
22	Prospects for detecting early warning signals in discrete event sequence data: Application to epidemiological incidence data. PLoS Computational Biology, 2020, 16, e1007836.	1.5	13
23	The problem of detrending when analysing potential indicators of disease elimination. Journal of Theoretical Biology, 2019, 481, 183-193.	0.8	14
24	Insights from quantitative and mathematical modelling on the proposed 2030 goals for Yaws. Gates Open Research, 2019, 3, 1576.	2.0	9
25	Diagnosing risk factors alongside mass drug administration using serial diagnostic tests—which test first?. Transactions of the Royal Society of Tropical Medicine and Hygiene, 2018, 112, 342-348.	0.7	0
26	A chemotactic model of trunk neural crest cell migration. Genesis, 2018, 56, e23239.	0.8	16
27	Targeted Treatment of Yaws With Household Contact Tracing: How Much Do We Miss?. American Journal of Epidemiology, 2018, 187, 837-844.	1.6	14
28	Measuring and modelling the effects of systematic non-adherence to mass drug administration. Epidemics, 2017, 18, 56-66.	1.5	72
29	Staged Models for Interdisciplinary Research. PLoS ONE, 2016, 11, e0157261.	1.1	12
30	Simplification and analysis of a model of social interaction in voting. European Physical Journal B, 2016, 89, 1.	0.6	4
31	Onset of collective motion in locusts is captured by a minimal model. Physical Review E, 2015, 92, 052708.	0.8	18
32	Quantitative analyses and modelling to support achievement of the 2020 goals for nine neglected tropical diseases. Parasites and Vectors, 2015, 8, 630.	1.0	80
33	The statistics of fixation times for systems with recruitment. Journal of Statistical Mechanics: Theory and Experiment, 2015, 2015, P01013.	0.9	4
34	The importance of volume exclusion in modelling cellular migration. Journal of Mathematical Biology, 2015, 71, 691-711.	0.8	34
35	Quantification of the natural history of visceral leishmaniasis and consequences for control. Parasites and Vectors, 2015, 8, 521.	1.0	41
36	Noise-Induced Bistable States and Their Mean Switching Time in Foraging Colonies. Physical Review Letters, 2014, 112, 038101.	2.9	106

LOUISE DYSON

#	Article	IF	CITATIONS
37	Macroscopic limits of individual-based models for motile cell populations with volume exclusion. Physical Review E, 2012, 86, 031903.	0.8	41
38	Multiscale mechanisms of cell migration during development: theory and experiment. Development (Cambridge), 2012, 139, 2935-2944.	1.2	133
39	Age-Related Changes in Speed and Mechanism of Adult Skeletal Muscle Stem Cell Migration. Stem Cells, 2012, 30, 1182-1195.	1.4	68
40	Modelling acidosis and the cell cycle in multicellular tumour spheroids. Journal of Theoretical Biology, 2012, 298, 107-115.	0.8	11
41	Estimating HIV, HCV and HSV2 incidence from emergency department serosurvey. Gates Open Research, 0, 5, 116.	2.0	Ο
42	How modelling can help steer the course set by the World Health Organization 2021-2030 roadmap on neglected tropical diseases. Gates Open Research, 0, 5, 112.	2.0	1