
Clara I SÃ;nchez

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2292726/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Automated COVID-19 Grading With Convolutional Neural Networks in Computed Tomography Scans: A Systematic Comparison. IEEE Transactions on Artificial Intelligence, 2022, 3, 129-138.	3.4	9
2	Trustworthy Al: Closing the gap between development and integration of Al systems in ophthalmic practice. Progress in Retinal and Eye Research, 2022, 90, 101034.	7.3	34
3	Automated Assessment of COVID-19 Reporting and Data System and Chest CT Severity Scores in Patients Suspected of Having COVID-19 Using Artificial Intelligence. Radiology, 2021, 298, E18-E28.	3.6	116
4	Quantification of Key Retinal Features in Early and Late Age-Related Macular Degeneration Using Deep Learning. American Journal of Ophthalmology, 2021, 226, 1-12.	1.7	32
5	Adversarial attack vulnerability of medical image analysis systems: Unexplored factors. Medical Image Analysis, 2021, 73, 102141.	7.0	35
6	Evaluation of a deep learning system for the joint automated detection of diabetic retinopathy and ageâ€related macular degeneration. Acta Ophthalmologica, 2020, 98, 368-377.	0.6	68
7	RETINAL HYPERREFLECTIVE FOCI IN TYPE 1 DIABETES MELLITUS. Retina, 2020, 40, 1565-1573.	1.0	14
8	Clinical study protocol for a low-interventional study in intermediate age-related macular degeneration developing novel clinical endpoints for interventional clinical trials with a regulatory and patient access intention—MACUSTAR. Trials, 2020, 21, 659.	0.7	21
9	A Deep Learning Model for Segmentation of Geographic Atrophy to Study Its Long-Term Natural History. Ophthalmology, 2020, 127, 1086-1096.	2.5	41
10	Automatic glaucoma classification using color fundus images based on convolutional neural networks and transfer learning. Biomedical Optics Express, 2019, 10, 892.	1.5	149
11	Highly Variable Disease Courses in Siblings with Stargardt Disease. Ophthalmology, 2019, 126, 1712-1721.	2.5	16
12	Genetic risk score has added value over initial clinical grading stage in predicting disease progression in age-related macular degeneration. Scientific Reports, 2019, 9, 6611.	1.6	21
13	RETOUCH: The Retinal OCT Fluid Detection and Segmentation Benchmark and Challenge. IEEE Transactions on Medical Imaging, 2019, 38, 1858-1874.	5.4	139
14	MACUSTAR: Development and Clinical Validation of Functional, Structural, and Patient-Reported Endpoints in Intermediate Age-Related Macular Degeneration. Ophthalmologica, 2019, 241, 61-72.	1.0	71
15	Deep learning approach for the detection and quantification of intraretinal cystoid fluid in multivendor optical coherence tomography. Biomedical Optics Express, 2018, 9, 1545.	1.5	124
16	Fast and effective quantification of symmetry in medical images for pathology detection: Application to chest radiography. Medical Physics, 2017, 44, 2242-2256.	1.6	7
17	White Matter and Gray Matter Segmentation in 4D Computed Tomography. Scientific Reports, 2017, 7, 119.	1.6	21
18	A survey on deep learning in medical image analysis. Medical Image Analysis, 2017, 42, 60-88.	7.0	7,976

CLARA I SÃINCHEZ

#	Article	IF	CITATIONS
19	Location Sensitive Deep Convolutional Neural Networks for Segmentation of White Matter Hyperintensities. Scientific Reports, 2017, 7, 5110.	1.6	171
20	Large scale deep learning for computer aided detection of mammographic lesions. Medical Image Analysis, 2017, 35, 303-312.	7.0	728
21	Automated Staging of Age-Related Macular Degeneration Using Optical Coherence Tomography. , 2017, 58, 2318.		93
22	Automatic detection of the foveal center in optical coherence tomography. Biomedical Optics Express, 2017, 8, 5160.	1.5	26
23	Robust total retina thickness segmentation in optical coherence tomography images using convolutional neural networks. Biomedical Optics Express, 2017, 8, 3292.	1.5	106
24	Normalized emphysema scores on low dose CT: Validation as an imaging biomarker for mortality. PLoS ONE, 2017, 12, e0188902.	1.1	14
25	Genetic Association Analysis of Drusen Progression. , 2016, 57, 2225.		12
26	Automatic differentiation of color fundus images containing drusen or exudates using a contextual spatial pyramid approach. Biomedical Optics Express, 2016, 7, 709.	1.5	8
27	An automated tuberculosis screening strategy combining X-ray-based computer-aided detection and clinical information. Scientific Reports, 2016, 6, 25265.	1.6	100
28	Deep learning as a tool for increased accuracy and efficiency of histopathological diagnosis. Scientific Reports, 2016, 6, 26286.	1.6	764
29	Pulmonary Nodule Detection in CT Images: False Positive Reduction Using Multi-View Convolutional Networks. IEEE Transactions on Medical Imaging, 2016, 35, 1160-1169.	5.4	926
30	Fast Convolutional Neural Network Training Using Selective Data Sampling: Application to Hemorrhage Detection in Color Fundus Images. IEEE Transactions on Medical Imaging, 2016, 35, 1273-1284.	5.4	335
31	Automatic detection of pleural effusion in chest radiographs. Medical Image Analysis, 2016, 28, 22-32.	7.0	31
32	Observer Variability for Classification of Pulmonary Nodules on Low-Dose CT Images and Its Effect on Nodule Management. Radiology, 2015, 277, 863-871.	3.6	145
33	Automatic Detection of Tuberculosis in Chest Radiographs Using a Combination of Textural, Focal, and Shape Abnormality Analysis. IEEE Transactions on Medical Imaging, 2015, 34, 2429-2442.	5.4	62
34	Automatic Identification of Reticular Pseudodrusen Using Multimodal Retinal Image Analysis. Investigative Ophthalmology and Visual Science, 2015, 56, 633-639.	3.3	32
35	Localized Energy-Based Normalization of Medical Images: Application to Chest Radiography. IEEE Transactions on Medical Imaging, 2015, 34, 1965-1975.	5.4	34
36	A Novel Multiple-Instance Learning-Based Approach to Computer-Aided Detection of Tuberculosis on Chest X-Rays. IEEE Transactions on Medical Imaging, 2015, 34, 179-192.	5.4	92

Clara I SÃinchez

#	Article	IF	CITATIONS
37	Cavity contour segmentation in chest radiographs using supervised learning and dynamic programming. Medical Physics, 2014, 41, 071912.	1.6	5
38	Clinical Characteristics of Familial and Sporadic Age-Related Macular Degeneration: Differences and Similarities. , 2014, 55, 7085.		9
39	Improving mass candidate detection in mammograms via feature maxima propagation and local feature selection. Medical Physics, 2014, 41, 081904.	1.6	3
40	Suppression of Translucent Elongated Structures: Applications in Chest Radiography. IEEE Transactions on Medical Imaging, 2013, 32, 2099-2113.	5.4	25
41	Perceptually adapted method for optic disc detection on retinal fundus images. , 2013, , .		6
42	Automatic age-related macular degeneration detection and staging. Proceedings of SPIE, 2013, , .	0.8	1
43	Foreign object detection and removal to improve automated analysis of chest radiographs. Medical Physics, 2013, 40, 071901.	1.6	6
44	Automatic Drusen Quantification and Risk Assessment of Age-Related Macular Degeneration on Color Fundus Images. , 2013, 54, 3019.		40
45	Clavicle segmentation in chest radiographs. Medical Image Analysis, 2012, 16, 1490-1502.	7.0	40
46	Contextual computer-aided detection: Improving bright lesion detection in retinal images and coronary calcification identification in CT scans. Medical Image Analysis, 2012, 16, 50-62.	7.0	41
47	Computer-Aided Lesion Diagnosis in Automated 3-D Breast Ultrasound Using Coronal Spiculation. IEEE Transactions on Medical Imaging, 2012, 31, 1034-1042.	5.4	63
48	Evaluation of a Computer-Aided Diagnosis System for Diabetic Retinopathy Screening on Public Data. , 2011, 52, 4866.		101
49	Retinopathy Online Challenge: Automatic Detection of Microaneurysms in Digital Color Fundus Photographs. IEEE Transactions on Medical Imaging, 2010, 29, 185-195.	5.4	414
50	Neural network based detection of hard exudates in retinal images. Computer Methods and Programs in Biomedicine, 2009, 93, 9-19.	2.6	144
51	Detection of Hard Exudates in Retinal Images Using a Radial Basis Function Classifier. Annals of Biomedical Engineering, 2009, 37, 1448-1463.	1.3	48
52	Retinal image analysis based on mixture models to detect hard exudates. Medical Image Analysis, 2009, 13, 650-658.	7.0	169
53	A novel automatic image processing algorithm for detection of hard exudates based on retinal image analysis. Medical Engineering and Physics, 2008, 30, 350-357.	0.8	133
54	Regional Analysis of Spontaneous MEG Rhythms in Patients with Alzheimer's Disease Using Spectral Entropies. Annals of Biomedical Engineering, 2008, 36, 141-152.	1.3	45

#	Article	IF	CITATIONS
55	Automatic detection of red lesions in retinal images using a multilayer perceptron neural network. , 2008, 2008, 5425-8.		30
56	Feature Extraction and Selection for the Automatic Detection of Hard Exudates in Retinal Images. Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 2007, 2007, 4969-72.	0.5	28
57	Automatic Image Processing Algorithm to Detect Hard Exudates based on Mixture Models. , 2006, 2006, 4453-6.		17
58	Variability, Regularity, and Complexity of Time Series Generated by Schizophrenic Patients and Control Subjects. IEEE Transactions on Biomedical Engineering, 2006, 53, 210-218.	2.5	65
59	Analysis of regularity in the EEG background activity of Alzheimer's disease patients with Approximate Entropy. Clinical Neurophysiology, 2005, 116, 1826-1834.	0.7	215