Leila Akkari

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/229258/publications.pdf

Version: 2024-02-01

31 papers	5,162	18	29
	citations	h-index	g-index
33	33	33	9482
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	CSF-1R inhibition alters macrophage polarization and blocks glioma progression. Nature Medicine, 2013, 19, 1264-1272.	30.7	1,812
2	Non-Cell-Autonomous Tumor Suppression by p53. Cell, 2013, 153, 449-460.	28.9	603
3	The tumor microenvironment underlies acquired resistance to CSF-1R inhibition in gliomas. Science, 2016, 352, aad3018.	12.6	477
4	Macrophage Ontogeny Underlies Differences in Tumor-Specific Education in Brain Malignancies. Cell Reports, 2016, 17, 2445-2459.	6.4	450
5	Metabolic origins of spatial organization in the tumor microenvironment. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 2934-2939.	7.1	259
6	Inducing and exploiting vulnerabilities for the treatment of liver cancer. Nature, 2019, 574, 268-272.	27.8	249
7	Obesity alters the lung myeloid cell landscape to enhance breast cancer metastasis through IL5 andÂGM-CSF. Nature Cell Biology, 2017, 19, 974-987.	10.3	205
8	EGFR activation limits the response of liver cancer to lenvatinib. Nature, 2021, 595, 730-734.	27.8	183
9	Dynamic changes in glioma macrophage populations after radiotherapy reveal CSF-1R inhibition as a strategy to overcome resistance. Science Translational Medicine, 2020, 12, .	12.4	170
10	Emergence of spatial structure in the tumor microenvironment due to the Warburg effect. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 19402-19407.	7.1	122
11	mTOR regulates phagosome and entotic vacuole fission. Molecular Biology of the Cell, 2013, 24, 3736-3745.	2.1	114
12	Distinct functions of macrophage-derived and cancer cell-derived cathepsin Z combine to promote tumor malignancy via interactions with the extracellular matrix. Genes and Development, 2014, 28, 2134-2150.	5.9	92
13	A Carbon Nanotube Optical Reporter Maps Endolysosomal Lipid Flux. ACS Nano, 2017, 11, 10689-10703.	14.6	84
14	Hepatitis C viral protein NS5A induces EMT and participates in oncogenic transformation of primary hepatocyte precursors. Journal of Hepatology, 2012, 57, 1021-1028.	3.7	67
15	TAILS N-Terminomics and Proteomics Show Protein Degradation Dominates over Proteolytic Processing by Cathepsins in Pancreatic Tumors. Cell Reports, 2016, 16, 1762-1773.	6.4	66
16	Understanding the Origin and Diversity of Macrophages to Tailor Their Targeting in Solid Cancers. Frontiers in Immunology, 2019, 10, 2215.	4.8	58
17	Combined deletion of cathepsin protease family members reveals compensatory mechanisms in cancer. Genes and Development, 2016, 30, 220-232.	5.9	50
18	Lymphotoxin Signaling Is Initiated by the Viral Polymerase in HCV-linked Tumorigenesis. PLoS Pathogens, 2013, 9, e1003234.	4.7	24

#	Article	IF	CITATIONS
19	Cell shape and TGFâ \in Î ² signaling define the choice of lineage during in vitro differentiation of mouse primary hepatic precursors. Journal of Cellular Physiology, 2010, 225, 186-195.	4.1	15
20	Modulation of Oxidative Stress by Twist Oncoproteins. PLoS ONE, 2013, 8, e72490.	2.5	14
21	Glioblastoma scRNA-seq shows treatment-induced, immune-dependent increase in mesenchymal cancer cells and structural variants in distal neural stem cells. Neuro-Oncology, 2022, 24, 1494-1508.	1.2	11
22	Therapy-induced shaping of the glioblastoma microenvironment: Macrophages at play. Seminars in Cancer Biology, 2022, 86, 41-56.	9.6	10
23	Microenvironmental InterFereNce of metabolism regulates chemosensitivity. Cell Research, 2016, 26, 867-868.	12.0	8
24	High-dose methotrexate-based chemotherapy as treatment for histiocytic sarcoma of the central nervous system. Leukemia and Lymphoma, 2016, 57, 1961-1964.	1.3	7
25	Multiparametric Analyses of Hepatocellular Carcinoma Somatic Mouse Models and Their Associated Tumor Microenvironment. Current Protocols, 2021, 1, e147.	2.9	5
26	Reply to: "Are Hedgehog and Wnt/β-catenin pathways involved in hepatitis C virus-mediated EMT?― Journal of Hepatology, 2013, 58, 637-638.	3.7	2
27	Mapping the Uncharted Territories of Human Brain Malignancies. Cell, 2020, 181, 1454-1457.	28.9	1
28	Role of Tumor Microenvironment in Hepatocellular Carcinoma Resistance. Resistance To Targeted Anti-cancer Therapeutics, 2017, , 45-64.	0.1	1
29	Abstract A33: Combinatorial targeting of tumor-associated macrophages/ microglia and radiotherapy in gliomas., 2015,,.		1
30	Challenges and opportunities in 2021. Nature Cancer, 2021, 2, 1278-1283.	13.2	1
31	Reply to: "Arginase 1: a potential marker of a common pattern of liver steatosis in HCV and NAFLD childrenâ€. Journal of Hepatology, 2015, 62, 1208-1209.	3.7	0