Tamotsu Yoshimori

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2292522/publications.pdf

Version: 2024-02-01

177	64,477	89 h-index	166
papers	citations		g-index
193	193	193	54138
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Rubicon-regulated beta-1 adrenergic receptor recycling protects the heart from pressure overload. Scientific Reports, 2022, 12, 41.	3.3	2
2	Protocols to monitor TFEB activation following lysosomal damage in cultured cells using microscopy and immunoblotting. STAR Protocols, 2022, 3, 101018.	1.2	1
3	Degradation of the NOTCH intracellular domain by elevated autophagy in osteoblasts promotes osteoblast differentiation and alleviates osteoporosis. Autophagy, 2022, 18, 2323-2332.	9.1	30
4	Non-canonical roles of ATG8 for TFEB activation. Biochemical Society Transactions, 2022, 50, 47-54.	3.4	3
5	Loss of RUBCN/rubicon in adipocytes mediates the upregulation of autophagy to promote the fasting response. Autophagy, 2022, 18, 2686-2696.	9.1	7
6	Age-associated decline of MondoA drives cellular senescence through impaired autophagy and mitochondrial homeostasis. Cell Reports, 2022, 38, 110444.	6.4	27
7	Autophagy system as a potential therapeutic target for neurodegenerative diseases. Neurochemistry International, 2022, 155, 105308.	3.8	11
8	PACSIN1 is indispensable for amphisome-lysosome fusion during basal autophagy and subsets of selective autophagy. PLoS Genetics, 2022, 18, e1010264.	3.5	10
9	Measurement of autophagy via LC3 western blotting following DNA-damage-induced senescence. STAR Protocols, 2022, 3, 101539.	1.2	2
10	Alternative mitochondrial quality control mediated by extracellular release. Autophagy, 2021, 17, 2962-2974.	9.1	53
11	Autophagy-independent function of lipidated LC3 essential for TFEB activation during the lysosomal damage responses. Autophagy, 2021, 17, 581-583.	9.1	13
12	Vacuolar protein Tag1 and Atg1–Atg13 regulate autophagy termination during persistent starvation in <i>S. cerevisiae</i> . Journal of Cell Science, 2021, 134, .	2.0	12
13	TP53/p53-FBXO22-TFEB controls basal autophagy to govern hormesis. Autophagy, 2021, 17, 3776-3793.	9.1	15
14	THOC4 regulates energy homeostasis by stabilizing <i>TFEB</i> mRNA during prolonged starvation. Journal of Cell Science, 2021, 134, .	2.0	0
15	Regulatory Mechanisms of Autophagy-Targeted Antimicrobial Therapeutics Against Mycobacterial Infection. Frontiers in Cellular and Infection Microbiology, 2021, 11, 633360.	3.9	13
16	Rubicon regulates A2E-induced autophagy impairment in the retinal pigment epithelium implicated in the pathology of age-related macular degeneration. Biochemical and Biophysical Research Communications, 2021, 551, 148-154.	2.1	8
17	Autophagy in major human diseases. EMBO Journal, 2021, 40, e108863.	7. 8	615
18	Rubicon prevents autophagic degradation of GATA4 to promote Sertoli cell function. PLoS Genetics, 2021, 17, e1009688.	3.5	13

#	Article	IF	CITATIONS
19	Rubicon in Metabolic Diseases and Ageing. Frontiers in Cell and Developmental Biology, 2021, 9, 816829.	3.7	5
20	Deregulated MTOR (mechanistic target of rapamycin kinase) is responsible for autophagy defects exacerbating kidney stone development. Autophagy, 2020, 16, 709-723.	9.1	31
21	Structural basis for autophagy inhibition by the human Rubicon–Rab7 complex. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 17003-17010.	7.1	18
22	Autophagy Declines with Premature Skin Aging resulting in Dynamic Alterations in Skin Pigmentation and Epidermal Differentiation. International Journal of Molecular Sciences, 2020, 21, 5708.	4.1	21
23	Age-dependent loss of adipose Rubicon promotes metabolic disorders via excess autophagy. Nature Communications, 2020, 11, 4150.	12.8	43
24	Autophagosome biogenesis and human health. Cell Discovery, 2020, 6, 33.	6.7	66
25	Starvation-induced autophagy via calcium-dependent TFEB dephosphorylation is suppressed by Shigyakusan. PLoS ONE, 2020, 15, e0230156.	2.5	8
26	Metabolic effects of RUBCN/Rubicon deficiency in kidney proximal tubular epithelial cells. Autophagy, 2020, 16, 1889-1904.	9.1	20
27	A BET family protein degrader provokes senolysis by targeting NHEJ and autophagy in senescent cells. Nature Communications, 2020, 11, 1935.	12.8	118
28	LC3 lipidation is essential for TFEB activation during the lysosomal damage response to kidney injury. Nature Cell Biology, 2020, 22, 1252-1263.	10.3	117
29	ERdj8 governs the size of autophagosomes during the formation process. Journal of Cell Biology, 2020, 219, .	5.2	14
30	Rubicon in pancreatic beta cells plays a limited role in maintaining glucose homeostasis following increased insulin resistance. Endocrine Journal, 2020, 67, 1119-1126.	1.6	5
31	Title is missing!. , 2020, 15, e0230156.		0
32	Title is missing!. , 2020, 15, e0230156.		0
33	Title is missing!. , 2020, 15, e0230156.		0
34	Title is missing!. , 2020, 15, e0230156.		0
35	Autophagy, Inflammation, and Metabolism (AIM) Center in its second year. Autophagy, 2019, 15, 1829-1833.	9.1	0
36	Distinct functions of ATG16L1 isoforms in membrane binding and LC3B lipidation in autophagy-related processes. Nature Cell Biology, 2019, 21, 372-383.	10.3	143

#	Article	IF	CITATIONS
37	Suppression of autophagic activity by Rubicon is a signature of aging. Nature Communications, 2019, 10, 847.	12.8	132
38	Autophagy-activating strategies to promote innate defense against mycobacteria. Experimental and Molecular Medicine, 2019, 51, 1-10.	7.7	43
39	Bidirectional Control of Autophagy by BECN1 BARA Domain Dynamics. Molecular Cell, 2019, 73, 339-353.e6.	9.7	61
40	Transgenic expression of a ratiometric autophagy probe specifically in neurons enables the interrogation of brain autophagy <i>in vivo</i> . Autophagy, 2019, 15, 543-557.	9.1	49
41	Dysregulation of autophagy in melanocytes contributes to hypopigmented macules in tuberous sclerosis complex. Journal of Dermatological Science, 2018, 89, 155-164.	1.9	17
42	An ATG16L1-dependent pathway promotes plasma membrane repair and limits Listeria monocytogenes cell-to-cell spread. Nature Microbiology, 2018, 3, 1472-1485.	13.3	57
43	Trophoblast-Specific Conditional Atg7 Knockout Mice Develop Gestational Hypertension. American Journal of Pathology, 2018, 188, 2474-2486.	3.8	52
44	Autophagy, Inflammation, and Metabolism (AIM) Center of Biomedical Research Excellence: supporting the next generation of autophagy researchers and fostering international collaborations. Autophagy, 2018, 14, 925-929.	9.1	3
45	Induction of selective autophagy in cells replicating hepatitis C virus genome. Journal of General Virology, 2018, 99, 1643-1657.	2.9	14
46	Autophagy and Longevity. Molecules and Cells, 2018, 41, 65-72.	2.6	105
47	The role of autophagy for protein aggregation in preeclampsia. Reproductive Immunology and Biology, 2018, 33, 18-25.	0.2	0
48	Intracellular fate of <i>Ureaplasma parvum</i> entrapped by host cellular autophagy. MicrobiologyOpen, 2017, 6, e00441.	3.0	18
49	Autophagy Inhibits the Accumulation of Advanced Glycation End Products by Promoting Lysosomal Biogenesis and Function in the Kidney Proximal Tubules. Diabetes, 2017, 66, 1359-1372.	0.6	97
50	Lysophagy: A Method for Monitoring Lysosomal Rupture Followed by Autophagy-Dependent Recovery. Methods in Molecular Biology, 2017, 1594, 141-149.	0.9	16
51	Autophagy and kidney inflammation. Autophagy, 2017, 13, 997-1003.	9.1	154
52	Defects in autophagosome-lysosome fusion underlie Vici syndrome, a neurodevelopmental disorder with multisystem involvement. Scientific Reports, 2017, 7, 3552.	3.3	46
53	Molecular definitions of autophagy and related processes. EMBO Journal, 2017, 36, 1811-1836.	7.8	1,230
54	Essential role for GABARAP autophagy proteins in interferon-inducible GTPase-mediated host defense. Nature Immunology, 2017, 18, 899-910.	14.5	85

#	Article	IF	CITATIONS
55	New insights into autophagosome–lysosome fusion. Journal of Cell Science, 2017, 130, 1209-1216.	2.0	368
56	Bacterial secretion system skews the fate of Legionella-containing vacuoles towards LC3-associated phagocytosis. Scientific Reports, 2017, 7, 44795.	3.3	36
57	Ubiquitination of exposed glycoproteins by SCF < sup>FBXO27 < /sup> directs damaged lysosomes for autophagy. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 8574-8579.	7.1	96
58	Endothelial cells are intrinsically defective in xenophagy of Streptococcus pyogenes. PLoS Pathogens, 2017, 13, e1006444.	4.7	26
59	Autophagosome–lysosome fusion in neurons requires <scp>INPP</scp> 5E, a protein associated with JoubertÂsyndrome. EMBO Journal, 2016, 35, 1853-1867.	7.8	121
60	Mitochondrial division occurs concurrently with autophagosome formation but independently of Drp1 during mitophagy. Journal of Cell Biology, 2016, 215, 649-665.	5.2	193
61	Regulation of lysosomal phosphoinositide balance by INPP5E is essential for autophagosome–lysosome fusion. Autophagy, 2016, 12, 2500-2501.	9.1	18
62	Atg9A trafficking through the recycling endosomes is required for autophagosome formation. Journal of Cell Science, 2016, 129, 3781-3791.	2.0	116
63	Rubicon inhibits autophagy and accelerates hepatocyte apoptosis and lipid accumulation in nonalcoholic fatty liver disease in mice. Hepatology, 2016, 64, 1994-2014.	7.3	264
64	Phospholipids in Autophagosome Formation and Fusion. Journal of Molecular Biology, 2016, 428, 4819-4827.	4.2	24
65	Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition). Autophagy, 2016, 12, 1-222.	9.1	4,701
66	The PtdIns3â€phosphatase MTMR3 interacts with mTORC1 and suppresses its activity. FEBS Letters, 2016, 590, 161-173.	2.8	26
67	Beyond starvation: An update on the autophagic machinery and its functions. Journal of Molecular and Cellular Cardiology, 2016, 95, 2-10.	1.9	42
68	Hyperuricemia-induced inflammasome and kidney diseases. Nephrology Dialysis Transplantation, 2016, 31, 890-896.	0.7	126
69	Selective autophagy: Lysophagy. Methods, 2015, 75, 128-132.	3.8	49
70	Autophagy and autophagy-related proteins in the immune system. Nature Immunology, 2015, 16, 1014-1024.	14.5	465
71	Reciprocal conversion of Gtr1 and Gtr2 nucleotide-binding states by Npr2-Npr3 inactivates TORC1 and induces autophagy. Autophagy, 2014, 10, 1565-1578.	9.1	58
72	Autophagosome formation in response to intracellular bacterial invasion. Cellular Microbiology, 2014, 16, 1619-1626.	2.1	27

#	Article	IF	Citations
73	Autophagy Induced by Calcium Phosphate Precipitates Targets Damaged Endosomes. Journal of Biological Chemistry, 2014, 289, 11162-11174.	3.4	69
74	The Parasitophorous Vacuole Membrane of Toxoplasma gondii Is Targeted for Disruption by Ubiquitin-like Conjugation Systems of Autophagy. Immunity, 2014, 40, 924-935.	14.3	179
75	Structural Basis of the Autophagy-Related LC3/Atg13 LIR Complex: Recognition and Interaction Mechanism. Structure, 2014, 22, 47-58.	3.3	93
76	A current perspective of autophagosome biogenesis. Cell Research, 2014, 24, 58-68.	12.0	302
77	Human IAPP–induced pancreatic β cell toxicity and its regulation by autophagy. Journal of Clinical Investigation, 2014, 124, 3634-3644.	8.2	154
78	Autophagy Has a Significant Role in Determining Skin Color by Regulating Melanosome Degradation in Keratinocytes. Journal of Investigative Dermatology, 2013, 133, 2416-2424.	0.7	153
79	TRAPPIII is responsible for the vesicular transport from early endosomes to the Golgi apparatus that facilitates Atg9 cycling in autophagy. Journal of Cell Science, 2013, 126, 4963-73.	2.0	74
80	Autophagy sequesters damaged lysosomes to control lysosomal biogenesis and kidney injury. EMBO Journal, 2013, 32, 2336-2347.	7.8	455
81	The autophagosome: origins unknown, biogenesis complex. Nature Reviews Molecular Cell Biology, 2013, 14, 759-774.	37.0	1,105
82	Phosphorylation of p62 Activates the Keap1-Nrf2 Pathway during Selective Autophagy. Molecular Cell, 2013, 51, 618-631.	9.7	880
83	Autophagosomes form at ER–mitochondria contact sites. Nature, 2013, 495, 389-393.	27.8	1,401
84	Up-to-date membrane biogenesis in the autophagosome formation. Current Opinion in Cell Biology, 2013, 25, 455-460.	5.4	102
85	Recruitment of the autophagic machinery to endosomes during infection is mediated by ubiquitin. Journal of Cell Biology, 2013, 203, 115-128.	5.2	242
86	Impaired autophagy by soluble endoglin, under physiological hypoxia in early pregnant period, is involved in poor placentation in preeclampsia. Autophagy, 2013, 9, 303-316.	9.1	162
87	Autophagy and bacterial infectious diseases. Experimental and Molecular Medicine, 2012, 44, 99.	7.7	97
88	Three-Axis Model for Atg Recruitment in Autophagy againstSalmonella. International Journal of Cell Biology, 2012, 2012, 1-6.	2.5	14
89	Autophagy Guards Against Cisplatin-Induced Acute Kidney Injury. American Journal of Pathology, 2012, 180, 517-525.	3.8	215
90	Host Cell Autophagy Activated by Antibiotics Is Required for Their Effective Antimycobacterial Drug Action. Cell Host and Microbe, 2012, 11, 457-468.	11.0	219

#	Article	IF	CITATIONS
91	Guidelines for the use and interpretation of assays for monitoring autophagy. Autophagy, 2012, 8, 445-544.	9.1	3,122
92	Vacuolating Cytotoxin and Variants in Atg16L1 That Disrupt Autophagy Promote Helicobacter pylori Infection in Humans. Gastroenterology, 2012, 142, 1160-1171.	1.3	190
93	Morphological Analysis of Autophagy. Methods in Molecular Biology, 2012, 931, 449-466.	0.9	9
94	Beclin 1-interacting autophagy protein Atg14L targets SNARE-associated protein Snapin to coordinate endocytic trafficking. Journal of Cell Science, 2012, 125, 4740-50.	2.0	50
95	Inhibition of autophagy potentiates the antitumor effect of the multikinase inhibitor sorafenib in hepatocellular carcinoma. International Journal of Cancer, 2012, 131, 548-557.	5.1	230
96	Membrane recruitment of autophagy proteins in selective autophagy. Hepatology Research, 2012, 42, 435-441.	3.4	5
97	Autophagy Creates a CTL Epitope That Mimics Tumor-Associated Antigens. PLoS ONE, 2012, 7, e47126.	2.5	16
98	Insights into membrane dynamics in autophagy. FASEB Journal, 2012, 26, 219.3.	0.5	0
99	Proteome of ubiquitin/MVB pathway: possible involvement of iron-induced ubiquitylation of transferrin receptor in lysosomal degradation. Genes To Cells, 2011, 16, 448-466.	1.2	29
100	Chemical modulators of autophagy as biological probes and potential therapeutics. Nature Chemical Biology, 2011, 7, 9-17.	8.0	344
101	Ubiquitination-mediated autophagy against invading bacteria. Current Opinion in Cell Biology, 2011, 23, 492-497.	5.4	44
102	A Sensitive and Quantitative Technique for Detecting Autophagic Events Based on Lysosomal Delivery. Chemistry and Biology, 2011, 18, 1042-1052.	6.0	507
103	The Role of Atg Proteins in Autophagosome Formation. Annual Review of Cell and Developmental Biology, 2011, 27, 107-132.	9.4	2,587
104	Dysfunction of Autophagy Participates in Vacuole Formation and Cell Death in Cells Replicating Hepatitis C Virus. Journal of Virology, 2011, 85, 13185-13194.	3.4	71
105	The LC3 recruitment mechanism is separate from Atg9L1-dependent membrane formation in the autophagic response against <i>Salmonella</i> . Molecular Biology of the Cell, 2011, 22, 2290-2300.	2.1	158
106	Atg16L2, a novel isoform of mammalian Atg16L that is not essential for canonical autophagy despite forming an Atg12–5-16L2 complex. Autophagy, 2011, 7, 1500-1513.	9.1	78
107	Where do they come from? Insights into autophagosome formation. FEBS Letters, 2010, 584, 1296-1301.	2.8	68
108	Modulation of Local PtdIns3P Levels by the PI Phosphatase MTMR3 Regulates Constitutive Autophagy. Traffic, 2010, 11, 468-478.	2.7	167

#	Article	IF	Citations
109	The origin of the autophagosomal membrane. Nature Cell Biology, 2010, 12, 831-835.	10.3	501
110	Autophagosomes can support Yersinia pseudotuberculosis replication in macrophages. Cellular Microbiology, 2010, 12, 1108-1123.	2.1	69
111	Combinational Soluble <i>N</i> -Ethylmaleimide-sensitive Factor Attachment Protein Receptor Proteins VAMP8 and Vti1b Mediate Fusion of Antimicrobial and Canonical Autophagosomes with Lysosomes. Molecular Biology of the Cell, 2010, 21, 1001-1010.	2.1	188
112	Autophagy requires endoplasmic reticulum targeting of the PI3-kinase complex via Atg14L. Journal of Cell Biology, 2010, 190, 511-521.	5.2	402
113	Rubicon and PLEKHM1 Negatively Regulate the Endocytic/Autophagic Pathway via a Novel Rab7-binding Domain. Molecular Biology of the Cell, 2010, 21, 4162-4172.	2.1	136
114	Artificial induction of autophagy around polystyrene beads in nonphagocytic cells. Autophagy, 2010, 6, 36-45.	9.1	67
115	Mediatory molecules that fuse autophagosomes and lysosomes. Autophagy, 2010, 6, 417-418.	9.1	14
116	Methods in Mammalian Autophagy Research. Cell, 2010, 140, 313-326.	28.9	3,939
117	Regulation of membrane biogenesis in autophagy via PI3P dynamics. Seminars in Cell and Developmental Biology, 2010, 21, 671-676.	5. 0	85
118	Autophagy requires endoplasmic reticulum targeting of the PI3-kinase complex via Atg14L. Journal of Experimental Medicine, 2010, 207, i24-i24.	8.5	0
119	Effect of <i>Helicobacter pylori</i> 's vacuolating cytotoxin on the autophagy pathway in gastric epithelial cells. Autophagy, 2009, 5, 370-379.	9.1	193
120	Autophagic Elimination of Misfolded Procollagen Aggregates in the Endoplasmic Reticulum as a Means of Cell Protection. Molecular Biology of the Cell, 2009, 20, 2744-2754.	2.1	187
121	Atg9a controls dsDNA-driven dynamic translocation of STING and the innate immune response. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 20842-20846.	7.1	705
122	Differential Involvement of Atg16L1 in Crohn Disease and Canonical Autophagy. Journal of Biological Chemistry, 2009, 284, 32602-32609.	3.4	108
123	Atg4B ^{C74A} hampers autophagosome closure: A useful protein for inhibiting autophagy. Autophagy, 2009, 5, 88-89.	9.1	31
124	Molecular basis of canonical and bactericidal autophagy. International Immunology, 2009, 21, 1199-1204.	4.0	37
125	An Initial Step of GAS-Containing Autophagosome-Like Vacuoles Formation Requires Rab7. PLoS Pathogens, 2009, 5, e1000670.	4.7	85
126	Cochaperone Activity of Human Butyrate-Induced Transcript 1 Facilitates Hepatitis C Virus Replication through an Hsp90-Dependent Pathway. Journal of Virology, 2009, 83, 10427-10436.	3.4	39

#	Article	IF	CITATIONS
127	Two Beclin 1-binding proteins, Atg14L and Rubicon, reciprocally regulate autophagy at different stages. Nature Cell Biology, 2009, 11, 385-396.	10.3	1,046
128	A subdomain of the endoplasmic reticulum forms a cradle for autophagosome formation. Nature Cell Biology, 2009, 11, 1433-1437.	10.3	976
129	Chapter 1 Monitoring Autophagy in Mammalian Cultured Cells through the Dynamics of LC3. Methods in Enzymology, 2009, 452, 1-12.	1.0	220
130	Group A Streptococcus: A Loser in the Battle with Autophagy. Current Topics in Microbiology and Immunology, 2009, 335, 217-226.	1.1	10
131	Loss of the autophagy protein Atg 16L1 enhances endotoxin-induced IL- $1\hat{l}^2$ production. Nature, 2008, 456, 264-268.	27.8	1,837
132	Autophagic control of listeria through intracellular innate immune recognition in drosophila. Nature Immunology, 2008, 9, 908-916.	14.5	332
133	Toward unraveling membrane biogenesis in mammalian autophagy. Current Opinion in Cell Biology, 2008, 20, 401-407.	5.4	100
134	The Atg16L Complex Specifies the Site of LC3 Lipidation for Membrane Biogenesis in Autophagy. Molecular Biology of the Cell, 2008, 19, 2092-2100.	2.1	900
135	Golgi-resident Small GTPase Rab33B Interacts with Atg16L and Modulates Autophagosome Formation. Molecular Biology of the Cell, 2008, 19, 2916-2925.	2.1	233
136	Guidelines for the use and interpretation of assays for monitoring autophagy in higher eukaryotes. Autophagy, 2008, 4, 151-175.	9.1	2,064
137	An Atg4B Mutant Hampers the Lipidation of LC3 Paralogues and Causes Defects in Autophagosome Closure. Molecular Biology of the Cell, 2008, 19, 4651-4659.	2.1	459
138	GFP-like Proteins Stably Accumulate in Lysosomes. Cell Structure and Function, 2008, 33, 1-12.	1.1	206
139	Dynein-dependent Movement of Autophagosomes Mediates Efficient Encounters with Lysosomes. Cell Structure and Function, 2008, 33, 109-122.	1.1	366
140	<i>Listeria monocytogenes</i> Evades Killing by Autophagy During Colonization of Host Cells. Autophagy, 2007, 3, 442-451.	9.1	229
141	Dissection of the Autophagosome Maturation Process by a Novel Reporter Protein, Tandem Fluorescent-Tagged LC3. Autophagy, 2007, 3, 452-460.	9.1	1,943
142	How to Interpret LC3 Immunoblotting. Autophagy, 2007, 3, 542-545.	9.1	2,207
143	Protective role of autophagy against Vibrio cholerae cytolysin, a pore-forming toxin from V. cholerae. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 1829-1834.	7.1	162
144	Role of Hrs in maturation of autophagosomes in mammalian cells. Biochemical and Biophysical Research Communications, 2007, 360, 721-727.	2.1	60

#	Article	IF	Citations
145	Autophagy: Paying Charon's Toll. Cell, 2007, 128, 833-836.	28.9	79
146	Autophagy in Innate Immunity against Intracellular Bacteria. Journal of Biochemistry, 2006, 140, 161-166.	1.7	115
147	Autophagy Eliminates Group A Streptococcus Invading Host Cells. , 2006, , 139-150.		0
148	Intracellular Inclusions Containing Mutant $\hat{l}\pm 1$ -Antitrypsin Z Are Propagated in the Absence of Autophagic Activity. Journal of Biological Chemistry, 2006, 281, 4467-4476.	3.4	235
149	Autophagy Controls Salmonella Infection in Response to Damage to the Salmonella-containing Vacuole. Journal of Biological Chemistry, 2006, 281, 11374-11383.	3.4	578
150	Molecular Dissection of Internalization of Porphyromonas gingivalis by Cells using Fluorescent Beads Coated with Bacterial Membrane Vesicle. Cell Structure and Function, 2005, 30, 81-91.	1.1	50
151	Inhibition of Macroautophagy Triggers Apoptosis. Molecular and Cellular Biology, 2005, 25, 1025-1040.	2.3	1,533
152	Regulation of Epidermal Growth Factor Receptor Down-Regulation by UBPY-mediated Deubiquitination at Endosomes. Molecular Biology of the Cell, 2005, 16, 5163-5174.	2.1	249
153	Endothelial Nitric-oxide Synthase Antisense (NOS3AS) Gene Encodes an Autophagy-related Protein (APG9-like2) Highly Expressed in Trophoblast. Journal of Biological Chemistry, 2005, 280, 18283-18290.	3.4	92
154	Escape of Intracellular <i>Shigella</i> from Autophagy. Science, 2005, 307, 727-731.	12.6	795
155	Induction of Autophagy to Myeloma Cells by Thalidomide and Clarithromycin Blood, 2005, 106, 5134-5134.	1.4	0
156	Alfy, a novel FYVE-domain-containing protein associated with protein granules and autophagic membranes. Journal of Cell Science, 2004, 117, 4239-4251.	2.0	271
157	The role of autophagy during the early neonatal starvation period. Nature, 2004, 432, 1032-1036.	27.8	2,630
158	In Vivo Analysis of Autophagy in Response to Nutrient Starvation Using Transgenic Mice Expressing a Fluorescent Autophagosome Marker. Molecular Biology of the Cell, 2004, 15, 1101-1111.	2.1	2,115
159	Autophagy Defends Cells Against Invading Group A <i>Streptococcus</i> . Science, 2004, 306, 1037-1040.	12.6	1,047
160	LC3, GABARAP and GATE16 localize to autophagosomal membrane depending on form-II formation. Journal of Cell Science, 2004, 117, 2805-2812.	2.0	1,256
161	Autophagy: a regulated bulk degradation process inside cells. Biochemical and Biophysical Research Communications, 2004, 313, 453-458.	2.1	480
162	Mouse Apg16L, a novel WD-repeat protein, targets to the autophagic isolation membrane with the Apg12-Apg5 conjugate. Journal of Cell Science, 2003, 116, 1679-1688.	2.0	660

#	Article	IF	CITATIONS
163	The ALG-2-interacting Protein Alix Associates with CHMP4b, a Human Homologue of Yeast Snf7 That Is Involved in Multivesicular Body Sorting. Journal of Biological Chemistry, 2003, 278, 39104-39113.	3.4	185
164	A dominant negative form of the AAA ATPase SKD1/VPS4 impairs membrane trafficking out of endosomal/lysosomal compartments: class Evpsphenotype in mammalian cells. Journal of Cell Science, 2003, 116, 401-414.	2.0	118
165	Toward and beyond Lysosomes. Cell Structure and Function, 2002, 27, 401-402.	1.1	1
166	SKD1 AAA ATPase-Dependent Endosomal Transport is Involved in Autolysosome Formation Cell Structure and Function, 2002, 27, 29-37.	1.1	131
167	Autophagosome Formation in Mammalian Cells Cell Structure and Function, 2002, 27, 421-429.	1.1	833
168	Beclin–phosphatidylinositol 3â€kinase complex functions at the trans â€Golgi network. EMBO Reports, 2001, 2, 330-335.	4.5	775
169	Autophagosome Requires Specific Early Sec Proteins for Its Formation and NSF/SNARE for Vacuolar Fusion. Molecular Biology of the Cell, 2001, 12, 3690-3702.	2.1	325
170	Dissection of Autophagosome Formation Using Apg5-Deficient Mouse Embryonic Stem Cells. Journal of Cell Biology, 2001, 152, 657-668.	5.2	1,282
171	Immunohistochemical localization of V-ATPases in rat spermatids. Journal of Developmental and Physical Disabilities, 2000, 23, 278-283.	3.6	10
172	The Mouse SKD1, a Homologue of Yeast Vps4p, Is Required for Normal Endosomal Trafficking and Morphology in Mammalian Cells. Molecular Biology of the Cell, 2000, 11, 747-763.	2.1	181
173	The Reversible Modification Regulates the Membrane-Binding State of Apg8/Aut7 Essential for Autophagy and the Cytoplasm to Vacuole Targeting Pathway. Journal of Cell Biology, 2000, 151, 263-276.	5.2	851
174	Formation Process of Autophagosome Is Traced with Apg8/Aut7p in Yeast. Journal of Cell Biology, 1999, 147, 435-446.	5.2	827
175	A 60 kDa Plasma Membrane Protein Changes its Localization to Autophagosome and Autolysosome Membranes during Induction of Autophagy in Rat Hepatoma Cell Line, H-4-II-E Cells Cell Structure and Function, 1999, 24, 59-70.	1.1	5
176	A protein conjugation system essential for autophagy. Nature, 1998, 395, 395-398.	27.8	1,468
177	Bafilomycin A1 Prevents Maturation of Autophagic Vacuoles by Inhibiting Fusion between Autophagosomes and Lysosomes in Rat Hepatoma Cell Line, H-4-II-E Cells Cell Structure and Function, 1998, 23, 33-42.	1.1	1,193