Julie A Mccann

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2292207/publications.pdf

Version: 2024-02-01

1163117 996975 21 511 8 15 citations h-index g-index papers 21 21 21 634 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	A Survey of Potential Security Issues in Existing Wireless Sensor Network Protocols. IEEE Internet of Things Journal, 2017, 4, 1910-1923.	8.7	190
2	Resource Allocation in Wireless Powered IoT Networks. IEEE Internet of Things Journal, 2019, 6, 4935-4945.	8.7	47
3	Efficient partial-pairs simrank search on large networks. Proceedings of the VLDB Endowment, 2015, 8, 569-580.	3.8	46
4	Resource Efficiency in Low-Power Wide-Area Networks for IoT Applications. , 2017, , .		42
5	SimRank*: effective and scalable pairwise similarity search based on graph topology. VLDB Journal, 2019, 28, 401-426.	4.1	33
6	Communication Schemes for Centralized and Decentralized Event-Triggered Control Systems. IEEE Transactions on Control Systems Technology, 2018, 26, 2035-2048.	5.2	31
7	Performance Analysis of Clustered LoRa Networks. IEEE Transactions on Vehicular Technology, 2019, 68, 7616-7629.	6.3	22
8	Dynamic Decentralized Periodic Event-Triggered Control for Wireless Cyber–Physical Systems. IEEE Transactions on Control Systems Technology, 2021, 29, 1783-1790.	5.2	18
9	Random Walk with Restart over Dynamic Graphs. , 2016, , .		14
10	Minimum Throughput Maximization in LoRa Networks Powered by Ambient Energy Harvesting., 2019,,.		14
10	Minimum Throughput Maximization in LoRa Networks Powered by Ambient Energy Harvesting., 2019,,. LoRa-LiSK: A Lightweight Shared Secret Key Generation Scheme for LoRa Networks. IEEE Internet of Things Journal, 2022, 9, 4110-4124.	8.7	14
	LoRa-LiSK: A Lightweight Shared Secret Key Generation Scheme for LoRa Networks. IEEE Internet of	8.7	
11	LoRa-LiSK: A Lightweight Shared Secret Key Generation Scheme for LoRa Networks. IEEE Internet of Things Journal, 2022, 9, 4110-4124.	8.7 7.8	13
11 12	LoRa-LiSK: A Lightweight Shared Secret Key Generation Scheme for LoRa Networks. IEEE Internet of Things Journal, 2022, 9, 4110-4124. Sig-SR., 2014, , . User Fairness in Energy Harvesting-Based LoRa Networks With Imperfect SF Orthogonality. IEEE		13
11 12 13	LoRa-LiSK: A Lightweight Shared Secret Key Generation Scheme for LoRa Networks. IEEE Internet of Things Journal, 2022, 9, 4110-4124. Sig-SR., 2014, , . User Fairness in Energy Harvesting-Based LoRa Networks With Imperfect SF Orthogonality. IEEE Transactions on Communications, 2021, 69, 4319-4334.		13 8 8
11 12 13	LoRa-LiSK: A Lightweight Shared Secret Key Generation Scheme for LoRa Networks. IEEE Internet of Things Journal, 2022, 9, 4110-4124. Sig-SR., 2014,,. User Fairness in Energy Harvesting-Based LoRa Networks With Imperfect SF Orthogonality. IEEE Transactions on Communications, 2021, 69, 4319-4334. Resource Allocation for Non-Orthogonal Multiple Access (NOMA) Enabled LPWA Networks., 2019,, Failure Detection Methods for Pipeline Networks: From Acoustic Sensing to Cyber-Physical Systems.	7.8	13 8 8 7
11 12 13 14	LoRa-LiSK: A Lightweight Shared Secret Key Generation Scheme for LoRa Networks. IEEE Internet of Things Journal, 2022, 9, 4110-4124. Sig-SR., 2014, User Fairness in Energy Harvesting-Based LoRa Networks With Imperfect SF Orthogonality. IEEE Transactions on Communications, 2021, 69, 4319-4334. Resource Allocation for Non-Orthogonal Multiple Access (NOMA) Enabled LPWA Networks., 2019, , . Failure Detection Methods for Pipeline Networks: From Acoustic Sensing to Cyber-Physical Systems. Sensors, 2021, 21, 4959. A Simplified Historical-Information-Based SOC Prediction Method for Supercapacitors. IEEE	7.8 3.8	13 8 8 7

#	Article	IF	CITATIONS
19	Efficient Pairwise Penetrating-rank Similarity Retrieval. ACM Transactions on the Web, 2019, 13, 1-52.	2.5	1
20	SING: Free-Space SensING of Grape Moisture Using RF Shadowing. IEEE Transactions on Instrumentation and Measurement, 2021, 70, 1-12.	4.7	1
21	From IoT to Ephemeral Computing. , 2017, , .		O