Felix Naef

List of Publications by Citations

Source: https://exaly.com/author-pdf/2291981/felix-naef-publications-by-citations.pdf

Version: 2024-04-28

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

108 8,140 45 90 h-index g-index citations papers 10.8 9,648 5.94 129 avg, IF L-index ext. citations ext. papers

#	Paper	IF	Citations
108	Circadian gene expression in individual fibroblasts: cell-autonomous and self-sustained oscillators pass time to daughter cells. <i>Cell</i> , 2004 , 119, 693-705	56.2	794
107	Mammalian genes are transcribed with widely different bursting kinetics. Science, 2011, 332, 472-4	33.3	616
106	Molecular signature of human embryonic stem cells and its comparison with the mouse. <i>Developmental Biology</i> , 2003 , 260, 404-13	3.1	406
105	Transport and conservation laws. <i>Physical Review B</i> , 1997 , 55, 11029-11032	3.3	396
104	Circadian regulation of gene expression systems in the Drosophila head. <i>Neuron</i> , 2001 , 32, 657-71	13.9	383
103	Genome-wide and phase-specific DNA-binding rhythms of BMAL1 control circadian output functions in mouse liver. <i>PLoS Biology</i> , 2011 , 9, e1000595	9.7	333
102	The nodal precursor acting via activin receptors induces mesoderm by maintaining a source of its convertases and BMP4. <i>Developmental Cell</i> , 2006 , 11, 313-23	10.2	231
101	Circadian clock-dependent and -independent rhythmic proteomes implement distinct diurnal functions in mouse liver. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2014 , 111, 167-72	11.5	227
100	The circadian clock coordinates ribosome biogenesis. <i>PLoS Biology</i> , 2013 , 11, e1001455	9.7	196
99	Chemotaxis behavior mediated by single larval olfactory neurons in Drosophila. <i>Current Biology</i> , 2005 , 15, 2086-96	6.3	190
98	Cold-inducible RNA-binding protein modulates circadian gene expression posttranscriptionally. <i>Science</i> , 2012 , 338, 379-83	33.3	188
97	A self-regulatory system of interlinked signaling feedback loops controls mouse limb patterning. <i>Science</i> , 2009 , 323, 1050-3	33.3	163
96	Circadian and feeding rhythms differentially affect rhythmic mRNA transcription and translation in mouse liver. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2015 , 112, E6579-88	11.5	150
95	Solving the riddle of the bright mismatches: labeling and effective binding in oligonucleotide arrays. <i>Physical Review E</i> , 2003 , 68, 011906	2.4	147
94	Genome-wide RNA polymerase II profiles and RNA accumulation reveal kinetics of transcription and associated epigenetic changes during diurnal cycles. <i>PLoS Biology</i> , 2012 , 10, e1001442	9.7	142
93	Absolute mRNA concentrations from sequence-specific calibration of oligonucleotide arrays. <i>Nucleic Acids Research</i> , 2003 , 31, 1962-8	20.1	135
92	Robust synchronization of coupled circadian and cell cycle oscillators in single mammalian cells. <i>Molecular Systems Biology</i> , 2014 , 10, 739	12.2	132

(2012-2017)

91	Guidelines for Genome-Scale Analysis of Biological Rhythms. <i>Journal of Biological Rhythms</i> , 2017 , 32, 380-393	3.2	127
90	Cellular oscillators: rhythmic gene expression and metabolism. <i>Current Opinion in Cell Biology</i> , 2005 , 17, 223-9	9	120
89	Circadian gene expression is resilient to large fluctuations in overall transcription rates. <i>EMBO Journal</i> , 2009 , 28, 123-34	13	118
88	Nuclear Proteomics Uncovers Diurnal Regulatory Landscapes in Mouse Liver. <i>Cell Metabolism</i> , 2017 , 25, 102-117	24.6	113
87	The Mouse Microbiome Is Required for Sex-Specific Diurnal Rhythms of Gene Expression and Metabolism. <i>Cell Metabolism</i> , 2019 , 29, 362-382.e8	24.6	109
86	Integration of light and temperature in the regulation of circadian gene expression in Drosophila. <i>PLoS Genetics</i> , 2007 , 3, e54	6	108
85	A process based assessment of the potential to reduce flood runoff by land use change. <i>Journal of Hydrology</i> , 2002 , 267, 74-79	6	105
84	A chemostat array enables the spatio-temporal analysis of the yeast proteome. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2013 , 110, 15842-7	11.5	103
83	Control of daily transcript oscillations in Drosophila by light and the circadian clock. <i>PLoS Genetics</i> , 2006 , 2, e39	6	103
82	Freedom and rules: the acquisition and reprogramming of a bird's learned song. <i>Science</i> , 2005 , 308, 104	16 3 9.3	99
81	Exploring the transcriptional landscape of plant circadian rhythms using genome tiling arrays. <i>Genome Biology</i> , 2009 , 10, R17	18.3	93
80	DNA hybridization to mismatched templates: a chip study. <i>Physical Review E</i> , 2002 , 65, 040902		
	· ·	2.4	93
79	Stimulus-induced modulation of transcriptional bursting in a single mammalian gene. <i>Proceedings</i> of the National Academy of Sciences of the United States of America, 2013 , 110, 20563-8	11.5	93
79 78		11.5	
	of the National Academy of Sciences of the United States of America, 2013, 110, 20563-8 Two distinct promoter architectures centered on dynamic nucleosomes control ribosomal protein	11.5	89
78	of the National Academy of Sciences of the United States of America, 2013, 110, 20563-8 Two distinct promoter architectures centered on dynamic nucleosomes control ribosomal protein gene transcription. Genes and Development, 2014, 28, 1695-709 Absolute quantification of transcription factors during cellular differentiation using multiplexed	11.5	89 76
78 77	of the National Academy of Sciences of the United States of America, 2013, 110, 20563-8 Two distinct promoter architectures centered on dynamic nucleosomes control ribosomal protein gene transcription. Genes and Development, 2014, 28, 1695-709 Absolute quantification of transcription factors during cellular differentiation using multiplexed targeted proteomics. Nature Methods, 2013, 10, 570-6	11.5 12.6 21.6	89 76 72

73	Engineered signaling centers for the spatially controlled patterning of human pluripotent stem cells. <i>Nature Methods</i> , 2019 , 16, 640-648	21.6	69
72	Structure of silent transcription intervals and noise characteristics of mammalian genes. <i>Molecular Systems Biology</i> , 2015 , 11, 823	12.2	69
71	Modulation of transcriptional burst frequency by histone acetylation. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2018 , 115, 7153-7158	11.5	67
70	In vivo transcriptional profile analysis reveals RNA splicing and chromatin remodeling as prominent processes for adult neurogenesis. <i>Molecular and Cellular Neurosciences</i> , 2006 , 31, 131-48	4.8	61
69	Clock-dependent chromatin topology modulates circadian transcription and behavior. <i>Genes and Development</i> , 2018 , 32, 347-358	12.6	59
68	Transcription factor activity rhythms and tissue-specific chromatin interactions explain circadian gene expression across organs. <i>Genome Research</i> , 2018 , 28, 182-191	9.7	58
67	Transcriptional regulatory logic of the diurnal cycle in the mouse liver. <i>PLoS Biology</i> , 2017 , 15, e200106	99.7	51
66	Circadian and Feeding Rhythms Orchestrate the Diurnal Liver Acetylome. <i>Cell Reports</i> , 2017 , 20, 1729-1	7<u>4</u>3 .6	51
65	Empirical characterization of the expression ratio noise structure in high-density oligonucleotide arrays. <i>Genome Biology</i> , 2002 , 3, RESEARCH0018	18.3	51
64	Temperature regulates splicing efficiency of the cold-inducible RNA-binding protein gene Cirbp. <i>Genes and Development</i> , 2016 , 30, 2005-17	12.6	48
63	The telomere-binding protein Tbf1 demarcates snoRNA gene promoters in Saccharomyces cerevisiae. <i>Molecular Cell</i> , 2010 , 38, 614-20	17.6	44
62	Molecular and statistical tools for circadian transcript profiling. <i>Methods in Enzymology</i> , 2005 , 393, 341-	6Б. ₇	43
61	A study of accuracy and precision in oligonucleotide arrays: extracting more signal at large concentrations. <i>Bioinformatics</i> , 2003 , 19, 178-84	7.2	41
60	Similarities and differences of polyadenylation signals in human and fly. <i>BMC Genomics</i> , 2006 , 7, 176	4.5	39
59	Origins and consequences of transcriptional discontinuity. Current Opinion in Cell Biology, 2011, 23, 657	-62	37
58	Circadian clock-dependent and -independent posttranscriptional regulation underlies temporal mRNA accumulation in mouse liver. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2018 , 115, E1916-E1925	11.5	36
57	Dynamical signatures of cellular fluctuations and oscillator stability in peripheral circadian clocks. <i>Molecular Systems Biology</i> , 2007 , 3, 93	12.2	35
56	Genomic and expression analysis of the 12p11-p12 amplicon using EST arrays identifies two novel amplified and overexpressed genes. <i>Cancer Research</i> , 2002 , 62, 6218-23	10.1	34

(2000-2017)

55	Ribosome profiling and dynamic regulation of translation in mammals. <i>Current Opinion in Genetics and Development</i> , 2017 , 43, 120-127	4.9	33
54	Production of ribosome components in effector CD4+ T cells is accelerated by TCR stimulation and coordinated by ERK-MAPK. <i>Immunity</i> , 2003 , 19, 535-48	32.3	32
53	Whole-embryo modeling of early segmentation in Drosophila identifies robust and fragile expression domains. <i>Biophysical Journal</i> , 2011 , 101, 287-96	2.9	31
52	Single Live Cell Monitoring of Protein Turnover Reveals Intercellular Variability and Cell-Cycle Dependence of Degradation Rates. <i>Molecular Cell</i> , 2018 , 71, 1079-1091.e9	17.6	30
51	Genotypic features of lentivirus transgenic mice. <i>Journal of Virology</i> , 2008 , 82, 7111-9	6.6	29
50	Systematic analysis of differential rhythmic liver gene expression mediated by the circadian clock and feeding rhythms. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2021 , 118,	11.5	29
49	Systems Chronobiology: Global Analysis of Gene Regulation in a 24-Hour Periodic World. <i>Cold Spring Harbor Perspectives in Biology</i> , 2017 , 9,	10.2	28
48	Sleep-wake-driven and circadian contributions to daily rhythms in gene expression and chromatin accessibility in the murine cortex. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2019 , 116, 25773-25783	11.5	27
47	Modeling an evolutionary conserved circadian cis-element. <i>PLoS Computational Biology</i> , 2008 , 4, e38	5	26
46	Rhythms of the Genome: Circadian Dynamics from Chromatin Topology, Tissue-Specific Gene Expression, to Behavior. <i>Trends in Genetics</i> , 2018 , 34, 915-926	8.5	26
45	Collective synchronization in populations of globally coupled phase oscillators with drifting frequencies. <i>Physical Review E</i> , 2006 , 73, 011104	2.4	25
44	Identifying synergistic regulation involving c-Myc and sp1 in human tissues. <i>Nucleic Acids Research</i> , 2007 , 35, 1098-107	20.1	25
43	Cell-type-specific transcriptomics in chimeric models using transcriptome-based masks. <i>Nucleic Acids Research</i> , 2005 , 33, e111	20.1	25
42	Autocorrelations from the transfer-matrix density-matrix renormalization-group method. <i>Physical Review B</i> , 1999 , 60, 359-368	3.3	23
41	Characteristic bimodal profiles of RNA polymerase II at thousands of active mammalian promoters. <i>Genome Biology</i> , 2014 , 15, R85	18.3	22
40	Space-time logic of liver gene expression at sub-lobular scale. <i>Nature Metabolism</i> , 2021 , 3, 43-58	14.6	18
39	Non-circadian expression masking clock-driven weak transcription rhythms in U2OS cells. <i>PLoS ONE</i> , 2014 , 9, e102238	3.7	15
38	Reactive hall response. <i>Physical Review Letters</i> , 2000 , 85, 377-80	7.4	14

37	Nuclear spin relaxation rates in two-Leg spin ladders. <i>Physical Review Letters</i> , 2000 , 84, 1320-3	7.4	14
36	Robust landscapes of ribosome dwell times and aminoacyl-tRNAs in response to nutrient stress in liver. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2020 , 117, 9630-9	644 ⁵	13
35	Memory and relatedness of transcriptional activity in mammalian cell lineages. <i>Nature Communications</i> , 2019 , 10, 1208	17.4	12
34	Circadian clocks go in vitro: purely post-translational oscillators in cyanobacteria. <i>Molecular Systems Biology</i> , 2005 , 1, 2005.0019	12.2	12
33	Cross-regulatory circuits linking inflammation, high-fat diet, and the circadian clock. <i>Genes and Development</i> , 2018 , 32, 1359-1360	12.6	12
32	Low-dimensional Dynamics of Two Coupled Biological Oscillators. <i>Nature Physics</i> , 2019 , 15, 1086-1094	16.2	11
31	Quantitative analysis and modeling probe polarity establishment in C. elegans embryos. <i>Biophysical Journal</i> , 2015 , 108, 799-809	2.9	9
30	Computational analysis of protein-DNA interactions from ChIP-seq data. <i>Methods in Molecular Biology</i> , 2012 , 786, 263-73	1.4	9
29	Few crucial links assure checkpoint efficiency in the yeast cell-cycle network. <i>Bioinformatics</i> , 2006 , 22, 2539-46	7.2	9
28	Representing perturbed dynamics in biological network models. <i>Physical Review E</i> , 2007 , 76, 011917	2.4	9
27	Analysis of the dynamics of limb transcriptomes during mouse development. <i>BMC Developmental Biology</i> , 2011 , 11, 47	3.1	8
26	The Effects of Time-Restricted Eating versus Standard Dietary Advice on Weight, Metabolic Health and the Consumption of Processed Food: A Pragmatic Randomised Controlled Trial in Community-Based Adults. <i>Nutrients</i> , 2021 , 13,	6.7	8
25	Revealing Assembly of a Pore-Forming Complex Using Single-Cell Kinetic Analysis and Modeling. <i>Biophysical Journal</i> , 2016 , 110, 1574-1581	2.9	7
24	Analysis of precision in chemical oscillators: implications for circadian clocks. <i>Physical Biology</i> , 2013 , 10, 056005	3	7
23	Differential regulation of RNA polymerase III genes during liver regeneration. <i>Nucleic Acids Research</i> , 2019 , 47, 1786-1796	20.1	7
22	Quantitative relationships between SMAD dynamics and target gene activation kinetics in single live cells. <i>Scientific Reports</i> , 2019 , 9, 5372	4.9	6
21	CAST: An automated segmentation and tracking tool for the analysis of transcriptional kinetics from single-cell time-lapse recordings. <i>Methods</i> , 2015 , 85, 3-11	4.6	6
20	Relationship between estrogen receptor alpha location and gene induction reveals the importance of downstream sites and cofactors. <i>BMC Genomics</i> , 2009 , 10, 381	4.5	6

(2021-2010)

19	ASSET: a robust algorithm for the automated segmentation and standardization of early Caenorhabditis elegans embryos. <i>Developmental Dynamics</i> , 2010 , 239, 3285-96	2.9	6
18	Reply to Comment on Bolving the riddle of the bright mismatches: Labeling and effective binding in oligonucleotide arrays <i>Physical Review E</i> , 2006 , 73,	2.4	6
17	What determines eukaryotic translation elongation: recent molecular and quantitative analyses of protein synthesis. <i>Open Biology</i> , 2020 , 10, 200292	7	6
16	Stabilizing patterning in the Drosophila segment polarity network by selecting models in silico. <i>BioSystems</i> , 2010 , 102, 3-10	1.9	5
15	A new promoter element associated with daily time keeping in Drosophila. <i>Nucleic Acids Research</i> , 2017 , 45, 6459-6470	20.1	4
14	Comment on "Circadian rhythms in the absence of the clock gene ". <i>Science</i> , 2021 , 372,	33.3	3
13	Oscillating and stable genome topologies underlie hepatic physiological rhythms during the circadian cycle. <i>PLoS Genetics</i> , 2021 , 17, e1009350	6	3
12	Characterization of the expression ratio noise structure in high-density oligonucleotide arrays. <i>Genome Biology</i> , 2002 , 3, PREPRINT0001	18.3	3
11	Network inference by combining biologically motivated regulatory constraints with penalized regression. <i>Annals of the New York Academy of Sciences</i> , 2009 , 1158, 114-24	6.5	2
10	Stochastic phase oscillators and circadian bioluminescence recordings. <i>Cold Spring Harbor Symposia on Quantitative Biology</i> , 2007 , 72, 405-11	3.9	2
9	How to tell time: advances in decoding circadian phase from omics snapshots. <i>F1000Research</i> , 2020 , 9,	3.6	2
8	Modeling ribosome dwell times and relationships with tRNA loading and codon usage in mammals		2
7	Stochastic phase oscillator models for circadian clocks. <i>Advances in Experimental Medicine and Biology</i> , 2008 , 641, 141-9	3.6	2
6	Simple and complex interactions between sleep-wake driven and circadian processes shape daily genome regulatory dynamics in the mouse		1
5	Oscillating and stable genome topologies underlie hepatic physiological rhythms during the circadian cycle		1
4	Transcription factor activity rhythms and tissue-specific chromatin interactions explain circadian gene expression across organs		1
3	Systems Biology and Modeling of Circadian Rhythms 2010 , 283-293		1
2	The circadian oscillator analysed at the single-transcript level. <i>Molecular Systems Biology</i> , 2021 , 17, e101	1 35 .2	1

A Self-regulatory System of Interlinked Signaling Feedback Loops Controls Mouse Limb Patterning.

Lecture Notes in Computer Science, 2010, 575-576

0.9