W W Langbein

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2291875/publications.pdf

Version: 2024-02-01

355 11,141 56 90 papers citations h-index g-index

363 363 363 363 6704

363 363 363 6704 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Ultralong Dephasing Time in InGaAs Quantum Dots. Physical Review Letters, 2001, 87, 157401.	7.8	870
2	Realizing the classical XY Hamiltonian in polaritonÂsimulators. Nature Materials, 2017, 16, 1120-1126.	27.5	228
3	Control of fine-structure splitting and biexciton binding inlnxGa1â^'xAsquantum dots by annealing. Physical Review B, 2004, 69, .	3.2	201
4	Rabi oscillations in the excitonic ground-state transition of InGaAs quantum dots. Physical Review B, 2002, 66, .	3.2	199
5	Trion, biexciton, and exciton dynamics in single self-assembled CdSe quantum dots. Physical Review B, 2003, 68, .	3.2	188
6	Radiatively limited dephasing in InAs quantum dots. Physical Review B, 2004, 70, .	3.2	186
7	Light Trapped in a Photonic Dot:  Microspheres Act as a Cavity for Quantum Dot Emission. Nano Letters, 2001, 1, 309-314.	9.1	164
8	Spectral hole-burning and carrier-heating dynamics in InGaAs quantum-dot amplifiers. IEEE Journal of Selected Topics in Quantum Electronics, 2000, 6, 544-551.	2.9	161
9	Photoluminescence and radiative lifetime of trions in GaAs quantum wells. Physical Review B, 2000, 62, 8232-8239.	3.2	158
10	Ultrafast gain dynamics in InAs-InGaAs quantum-dot amplifiers. IEEE Photonics Technology Letters, 2000, 12, 594-596.	2.5	156
11	Giant exciton oscillator strength and radiatively limited dephasing in two-dimensional platelets. Physical Review B, 2015, 91, .	3.2	143
12	Exciton dephasing via phonon interactions in InAs quantum dots: Dependence on quantum confinement. Physical Review B, 2005, 71, .	3.2	139
13	Up on the Jaynes–Cummings ladder of a quantum-dot/microcavity system. Nature Materials, 2010, 9, 304-308.	27.5	138
14	Radiatively Limited Dephasing and Exciton Dynamics in MoSe ₂ Monolayers Revealed with Four-Wave Mixing Microscopy. Nano Letters, 2016, 16, 5333-5339.	9.1	133
15	Nonmonotonous temperature dependence of the initial decoherence in quantum dots. Physical Review B, 2004, 70, .	3.2	128
16	Time-Resolved Speckle Analysis: A New Approach to Coherence and Dephasing of Optical Excitations in Solids. Physical Review Letters, 1999, 82, 1040-1043.	7.8	123
17	Brillouin-Wigner perturbation theory in open electromagnetic systems. Europhysics Letters, 2010, 92, 50010.	2.0	123
18	No exceptional precision of exceptional-point sensors. Physical Review A, 2018, 98, .	2.5	123

#	Article	IF	CITATIONS
19	Dispersion of the second-order nonlinear susceptibility in ZnTe, ZnSe, and ZnS. Physical Review B, 1998, 58, 10494-10501.	3.2	120
20	Dephasing in InAs/GaAs quantum dots. Physical Review B, 1999, 60, 7784-7787.	3.2	117
21	Excitons, biexcitons, and phonons in ultrathin CdSe/ZnSe quantum structures. Physical Review B, 1999, 60, 8773-8782.	3.2	115
22	Direct observation of free-exciton thermalization in quantum-well structures. Physical Review B, 1998, 57, 1390-1393.	3.2	114
23	Resonant-state expansion applied to three-dimensional open optical systems. Physical Review A, 2014, 90, .	2.5	113
24	Coherent anti-Stokes Raman microspectroscopy using spectral focusing with glass dispersion. Applied Physics Letters, 2008, 93, .	3.3	112
25	Exact mode volume and Purcell factor of open optical systems. Physical Review B, 2016, 94, .	3.2	105
26	Exciton Dephasing in Quantum Dot Molecules. Physical Review Letters, 2003, 91, 267401.	7.8	100
27	Homogeneous linewidth of confined electron-hole-pair states in II-VI quantum dots. Physical Review B, 1993, 47, 3684-3689.	3.2	98
28	Quantum Complementarity of Microcavity Polaritons. Physical Review Letters, 2005, 94, .	7.8	94
29	Exciton relaxation and dephasing in quantum-dot amplifiers from room to cryogenic temperature. IEEE Journal of Selected Topics in Quantum Electronics, 2002, 8, 984-991.	2.9	93
30	Nonlinear vibrational microscopy applied to lipid biology. Progress in Lipid Research, 2013, 52, 615-632.	11.6	93
31	Optimizing the Drude-Lorentz model for material permittivity: Method, program, and examples for gold, silver, and copper. Physical Review B, 2017, 95, .	3.2	92
32	Quantitative Chemical Imaging and Unsupervised Analysis Using Hyperspectral Coherent Anti-Stokes Raman Scattering Microscopy. Analytical Chemistry, 2013, 85, 10820-10828.	6.5	87
33	Time-resolved optical characterization of InAs/InGaAs quantum dots emitting at 1.3 Î⅓m. Applied Physics Letters, 2000, 76, 3430-3432.	3.3	85
34	Exciton localization and interface roughness in growth-interrupted GaAs/AlAs quantum wells. Physical Review B, 2000, 61, 10322-10329.	3.2	82
35	Optical anisotropy in vertically coupled quantum dots. Physical Review B, 1999, 60, 16680-16685.	3.2	80
36	Coherent coupling between distant excitons revealed by two-dimensional nonlinear hyperspectral imaging. Nature Photonics, 2011, 5, 57-63.	31.4	78

#	Article	lF	Citations
37	Excited-state gain dynamics in InGaAs quantum-dot amplifiers. IEEE Photonics Technology Letters, 2005, 17, 2014-2016.	2.5	76
38	Binding-energy distribution and dephasing of localized biexcitons. Physical Review B, 1997, 55, R7383-R7386.	3.2	75
39	Phonon interaction of single excitons and biexcitons. Physical Review B, 1999, 60, R2157-R2160.	3.2	75
40	Ultrafast carrier dynamics in InGaAs quantum dot materials and devices. Journal of Optics, 2006, 8, S33-S46.	1.5	75
41	Linewidth enhancement factor in InGaAs quantum-dot amplifiers. IEEE Journal of Quantum Electronics, 2004, 40, 1423-1429.	1.9	73
42	From Dark to Bright: First-Order Perturbation Theory with Analytical Mode Normalization for Plasmonic Nanoantenna Arrays Applied to Refractive Index Sensing. Physical Review Letters, 2016, 116, 237401.	7.8	73
43	Coherent Control and Polarization Readout of Individual Excitonic States. Physical Review Letters, 2005, 95, 266401.	7.8	71
44	Dephasing in the quasi-two-dimensional exciton-biexciton system. Physical Review B, 2000, 61, 1692-1695.	3.2	70
45	Ultrafast carrier dynamics and dephasing in InAs quantum-dot amplifiers emitting near 1.3-1¼m-wavelength at room temperature. Applied Physics Letters, 2001, 79, 2633-2635.	3.3	69
46	Measurement of the dynamics of plasmons inside individual gold nanoparticles using a femtosecond phase-resolved microscope. Physical Review B, 2012, 85, .	3.2	69
47	Well-width dependence of exciton-phonon scattering inlnxGa1â^'xAs/GaAssingle quantum wells. Physical Review B, 1999, 59, 2215-2222.	3.2	66
48	Heterodyne pump-probe and four-wave mixing in semiconductor optical amplifiers using balanced lock-in detection. Optics Communications, 1999, 169, 317-324.	2.1	66
49	Luminescence spectra and kinetics of disordered solid solutions. Physical Review B, 1999, 59, 12947-12972.	3.2	65
50	Elastic Scattering Dynamics of Cavity Polaritons: Evidence for Time-Energy Uncertainty and Polariton Localization. Physical Review Letters, 2002, 88, 047401.	7.8	65
51	Polarization beats in ballistic propagation of exciton-polaritons in microcavities. Physical Review B, 2007, 75, .	3.2	64
52	Heterodyne spectral interferometry for multidimensional nonlinear spectroscopy of individual quantum systems. Optics Letters, 2006, 31, 1151.	3.3	63
53	Quantitative imaging of lipids in live mouse oocytes and early embryos using CARS microscopy. Development (Cambridge), 2016, 143, 2238-47.	2.5	61
54	Spontaneous parametric scattering of microcavity polaritons in momentum space. Physical Review B, 2004, 70, .	3.2	60

#	Article	IF	CITATIONS
55	Long Exciton Dephasing Time and Coherent Phonon Coupling in CsPbBr ₂ Cl Perovskite Nanocrystals. Nano Letters, 2018, 18, 7546-7551.	9.1	60
56	Simultaneous hyperspectral differential-CARS, TPF and SHG microscopy with a single 5 fs Ti:Sa laser. Optics Express, 2013, 21, 7096.	3.4	58
57	Resonant-state expansion of dispersive open optical systems: Creating gold from sand. Physical Review B, 2016, 93, .	3.2	57
58	Resonant state expansion applied to two-dimensional open optical systems. Physical Review A, 2013, 87, .	2.5	56
59	Coherent anti-Stokes Raman scattering microscopy of single nanodiamonds. Nature Nanotechnology, 2014, 9, 940-946.	31.5	56
60	Coherent antiâ€Stokes Raman microâ€spectroscopy using spectral focusing: theory and experiment. Journal of Raman Spectroscopy, 2009, 40, 800-808.	2.5	55
61	Coherent and Incoherent Exciton Dynamics in Al _{1â^²<i>y</i>} Ga _{<i>y</i>} As/GaAs Multiple Quantum Wells. Physica Status Solidi (B): Basic Research, 1992, 173, 53-68.	1.5	52
62	Stimulated Secondary Emission from Semiconductor Microcavities. Physical Review Letters, 2001, 86, 5791-5794.	7.8	52
63	Realistic heterointerface model for excitonic states in growth-interrupted GaAs quantum wells. Physical Review B, 2006, 74, .	3.2	50
64	Differential coherent anti-Stokes Raman scattering microscopy with linearly chirped femtosecond laser pulses. Optics Letters, 2009, 34, 2258.	3.3	49
65	Microcavity controlled coupling of excitonic qubits. Nature Communications, 2013, 4, 1747.	12.8	49
66	Localization-enhanced biexciton binding in semiconductors. Physical Review B, 1999, 59, 15405-15408.	3.2	48
67	Spin-Flip Limited Exciton Dephasing in <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>CdSe</mml:mi><mml:mo>/</mml:mo><mml:mi>ZnS</mml:mi></mml:math> Colloidal Quantum Dots. Physical Review Letters, 2012, 108, 087401.	7.8	48
68	Mixed biexcitons in single quantum wells. Physical Review B, 1999, 59, 4584-4587.	3.2	47
69	Hyperspectral and differential CARS microscopy for quantitative chemical imaging in human adipocytes. Biomedical Optics Express, 2014, 5, 1378.	2.9	47
70	Optimization of the confinement energy of quantum-wire states in T-shaped GaAs/AlxGa1â^'xAs structures. Physical Review B, 1996, 54, 14595-14603.	3.2	46
71	Quantum kinetic exciton–LO-phonon interaction in CdSe. Physical Review B, 2000, 61, 1935-1940.	3.2	46
72	Relaxation and Dephasing of Multiexcitons in Semiconductor Quantum Dots. Physical Review Letters, 2002, 89, 187401.	7.8	46

#	Article	IF	CITATIONS
73	Single source coherent anti-Stokes Raman microspectroscopy using spectral focusing. Applied Physics Letters, 2009, 95, 081109.	3.3	46
74	Measurement and calculation of the critical pulsewidth for gain saturation in semiconductor optical amplifiers. Optics Communications, 1999, 164, 51-55.	2.1	45
75	Spectral signatures of χ^(5) processes in four-wave mixing of homogeneously broadened excitons. Journal of the Optical Society of America B: Optical Physics, 2001, 18, 1318.	2.1	44
76	Resonant Rayleigh Scattering of Exciton-Polaritons in Multiple Quantum Wells. Physical Review Letters, 2000, 85, 650-653.	7.8	43
77	Time-resolved four-wave mixing in InAs/InGaAs quantum-dot amplifiers under electrical injection. Applied Physics Letters, 2000, 76, 1380-1382.	3.3	43
78	Optical analogue of the spin Hall effect in a photonic cavity. Optics Letters, 2011, 36, 1095.	3.3	43
79	A monolithic optical sensor based on whispering-gallery modes in polystyrene microspheres. Applied Physics Letters, 2008, 93, .	3.3	42
80	Resonant four-wave mixing of gold nanoparticles for three-dimensional cell microscopy. Optics Letters, 2009, 34, 1816.	3.3	41
81	Electron microscopic and optical investigations of the indium distribution in GaAs capped InxGa1â^'xAs islands. Applied Physics Letters, 1997, 71, 377-379.	3.3	40
82	Interaction-induced effects in the nonlinear coherent response of quantum-well excitons. Physical Review B, 1999, 60, 4454-4457.	3.2	40
83	Optical properties of InAlGaAs quantum wells: Influence of segregation and band bowing. Journal of Applied Physics, 1999, 86, 2584-2589.	2.5	40
84	Optical resonances in microcylinders: response to perturbations for biosensing. Journal of the Optical Society of America B: Optical Physics, 2008, 25, 1312.	2.1	40
85	Engineering the Spin–Flip Limited Exciton Dephasing in Colloidal CdSe/CdS Quantum Dots. ACS Nano, 2012, 6, 5227-5233.	14.6	40
86	Analytical normalization of resonant states in photonic crystal slabs and periodic arrays of nanoantennas at oblique incidence. Physical Review B, 2017, 96, .	3.2	40
87	Nonlinear-optical properties of semiconductor quantum dots and their correlation with the precipitation stage. Journal of the Optical Society of America B: Optical Physics, 1993, 10, 1947.	2.1	39
88	Binding energy and dephasing of biexcitons inIn0.18Ga0.82As/GaAssingle quantum wells. Physical Review B, 1999, 60, 4505-4508.	3.2	39
89	Time- and spectrally-resolved four-wave mixing in singleCdTeâ^•ZnTequantum dots. Physical Review B, 2006, 73, .	3.2	39
90	Quantitative Spatiotemporal Chemical Profiling of Individual Lipid Droplets by Hyperspectral CARS Microscopy in Living Human Adipose-Derived Stem Cells. Analytical Chemistry, 2016, 88, 3677-3685.	6.5	39

#	Article	IF	CITATIONS
91	Impact of environment on dynamics of exciton complexes in a WS ₂ monolayer. 2D Materials, 2018, 5, 031007.	4.4	39
92	Interaction and dephasing of center-of-mass quantized excitons in wideZnSe/Zn0.94Mg0.06Sequantum wells. Physical Review B, 1998, 57, 1791-1796.	3.2	38
93	Many-body effects and carrier dynamics in CdSe/CdS Stark superlattices. Physical Review B, 1995, 51, 9922-9929.	3.2	37
94	Hyperspectral image analysis for CARS, SRS, and Raman data. Journal of Raman Spectroscopy, 2015, 46, 727-734.	2.5	37
95	Microscopic Measurement of Photon Echo Formation in Groups of Individual Excitonic Transitions. Physical Review Letters, 2005, 95, 017403.	7.8	36
96	Linear Wave Dynamics Explains Observations Attributed to Dark Solitons in a Polariton Quantum Fluid. Physical Review Letters, 2014, 113, 103901.	7.8	36
97	Impact of Phonons on Dephasing of Individual Excitons in Deterministic Quantum Dot Microlenses. ACS Photonics, 2016, 3, 2461-2466.	6.6	35
98	Huge binding energy of localized biexcitons in CdS/ZnS quantum structures. Physical Review B, 2000, 61, 12632-12635.	3.2	34
99	Biexcitons or bipolaritons in a semiconductor microcavity. Physical Review B, 2000, 62, R7763-R7766.	3.2	34
100	Self-induced transparency in InGaAs quantum-dot waveguides. Applied Physics Letters, 2003, 83, 3668-3670.	3.3	34
101	Four-wave mixing dynamics of excitons in InGaAs self-assembled quantum dots. Journal of Physics Condensed Matter, 2007, 19, 295201.	1.8	34
102	Resonant-state expansion applied to planar waveguides. Physical Review A, 2014, 89, .	2.5	34
103	Dynamics of excitons in individual InAs quantum dots revealed in four-wave mixing spectroscopy. Optica, 2016, 3, 377.	9.3	34
104	Multi-wave coherent control of a solid-state single emitter. Nature Photonics, 2016, 10, 155-158.	31.4	34
105	Lipid Bilayer Thickness Measured by Quantitative DIC Reveals Phase Transitions and Effects of Substrate Hydrophilicity. Langmuir, 2019, 35, 13805-13814.	3.5	34
106	Trions in GaAs Quantum Wells: Photoluminescence Lineshape Analysis. Physica Status Solidi A, 2000, 178, 489-494.	1.7	33
107	Ultranarrow polaritons in a semiconductor microcavity. Applied Physics Letters, 2000, 76, 3262-3264.	3.3	33
108	Measurement of pulse amplitude and phase distortion in a semiconductor optical amplifier: from pulse compression to breakup. IEEE Photonics Technology Letters, 2000, 12, 1674-1676.	2.5	33

#	Article	IF	CITATIONS
109	Ultrafast gain dynamics in 1.3î¼m InAsâ^•GaAs quantum-dot optical amplifiers: The effect of p doping. Applied Physics Letters, 2007, 90, 201103.	3.3	33
110	Measuring the Lamellarity of Giant Lipid Vesicles with Differential Interference Contrast Microscopy. Biophysical Journal, 2013, 105, 1414-1420.	0.5	33
111	Asymmetric GaAs/AlGaAs T wires with large confinement energies. Applied Physics Letters, 1996, 69, 3248-3250.	3.3	32
112	Temperature-dependent line widths of single excitons and biexcitons. Journal of Luminescence, 2000, 87-89, 381-383.	3.1	32
113	Structural and electrooptical characteristics of quantum dots emitting at 1.3 \hat{l} 4m on gallium arsenide. IEEE Journal of Quantum Electronics, 2001, 37, 1050-1058.	1.9	31
114	Polariton condensation in a strain-compensated planar microcavity with InGaAs quantum wells. Applied Physics Letters, 2014, 105, .	3.3	31
115	Coherent optical nonlinearities and phase relaxation of quasi-three-dimensional and quasi-two-dimensional excitons inZnSxSe1â°x/ZnSestructures. Physical Review B, 1997, 56, 12581-12588.	3.2	30
116	Confined biexcitons in CuBr quantum dots. Journal of Luminescence, 1994, 59, 135-145.	3.1	29
117	Spectral Hole-Burning and Carrier-Heating Dynamics in Quantum-Dot Amplifiers: Comparison with Bulk Amplifiers. Physica Status Solidi (B): Basic Research, 2001, 224, 419-423.	1.5	29
118	Resonant-state expansion applied to planar open optical systems. Physical Review A, 2012, 85, .	2.5	28
119	Transient four-wave mixing in T-shaped GaAs quantum wires. Physical Review B, 1999, 60, 16667-16674.	3.2	27
120	Stimulated emission of II–VI epitaxial layers. Journal of Crystal Growth, 1994, 138, 786-790.	1.5	26
121	Enhanced Resonant Backscattering of Excitons in Disordered Quantum Wells. Physical Review Letters, 2002, 89, 157401.	7.8	26
122	99% beta factor and directional coupling of quantum dots to fast light in photonic crystal waveguides determined by spectral imaging. Physical Review B, 2019, 100, .	3.2	26
123	Coherence and Density Dynamics of Excitons in a Single-Layer MoS ₂ Reaching the Homogeneous Limit. ACS Nano, 2019, 13, 3500-3511.	14.6	26
124	Exciton dephasing in ZnSe quantum wires. Physical Review B, 1998, 57, 1797-1800.	3.2	25
125	Exciton dephasing and biexciton binding in CdSe/ZnSe islands. Physical Review B, 1999, 60, 10640-10643.	3.2	25
126	Effect of a dielectric substrate on whispering-gallery-mode sensors. Journal of the Optical Society of America B: Optical Physics, 2006, 23, 2361.	2.1	25

#	Article	IF	CITATIONS
127	Label-Free Volumetric Quantitative Imaging of the Human Somatic Cell Division by Hyperspectral Coherent Anti-Stokes Raman Scattering. Analytical Chemistry, 2019, 91, 2813-2821.	6.5	25
128	Direct evidence of reduced dynamic scattering in the lower polariton of a semiconductor microcavity. Physical Review B, 2000, 61, R13377-R13380.	3.2	24
129	High Q optical resonances of polystyrene microspheres in water controlled by optical tweezers. Applied Physics Letters, 2007, 91, 141116.	3.3	24
130	Transient coherent nonlinear spectroscopy of single quantum dots. Journal of Physics Condensed Matter, 2007, 19, 295203.	1.8	24
131	Picosecond luminescence dynamics in CdS/CdSe Stark superlattices. Applied Physics Letters, 1994, 65, 2466-2468.	3.3	23
132	Exciton localisation in CdSe islands buried in a quantum well of Zn1â^'xCdxSe. Journal of Crystal Growth, 1998, 184-185, 306-310.	1.5	23
133	Separation of coherent and incoherent nonlinearities in a heterodyne pump-probe experiment. Optics Express, 2000, 7, 107.	3.4	23
134	Polarization-resolved extinction and scattering cross-sections of individual gold nanoparticles measured by wide-field microscopy on a large ensemble. Applied Physics Letters, 2013, 102, 131107.	3.3	23
135	Resonant-state expansion of three-dimensional open optical systems: Light scattering. Physical Review A, 2018, 98, .	2.5	23
136	Use of Two-Photon Lithography with a Negative Resist and Processing to Realise Cylindrical Magnetic Nanowires. Nanomaterials, 2020, 10, 429.	4.1	22
137	Linewidth Statistics of Single InGaAs Quantum Dot Photoluminescence Lines. Physica Status Solidi (B): Basic Research, 2000, 221, 49-53.	1.5	21
138	Theory of propagation and scattering of exciton–polaritons in quantum wells. Solid State Communications, 2001, 120, 259-263.	1.9	21
139	Radiative corrections to the excitonic molecule state in GaAs microcavities. Physical Review B, 2004, 69, .	3.2	21
140	Exciton dephasing in lead sulfide quantum dots by <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mi>X</mml:mi></mml:mrow></mml:math> -point phonons. Physical Review B, 2011, 83, .	3.2	21
141	Hyperspectral analysis applied to micro-Brillouin maps of amyloid-beta plaques in Alzheimer's disease brains. Analyst, The, 2018, 143, 6095-6102.	3 . 5	21
142	Spectral speckle analysis of resonant secondary emission from solids. Physical Review B, 2002, 66, .	3.2	20
143	Chemicallyâ€specific dual/differential CARS microâ€spectroscopy of saturated and unsaturated lipid droplets. Journal of Biophotonics, 2014, 7, 68-76.	2.3	20
144	Hyperspectral volumetric coherent antiâ€Stokes Raman scattering microscopy: quantitative volume determination and NaCl as nonâ€resonant standard. Journal of Raman Spectroscopy, 2016, 47, 1167-1173.	2.5	20

#	Article	IF	Citations
145	Bessel-Beam Hyperspectral CARS Microscopy with Sparse Sampling: Enabling High-Content High-Throughput Label-Free Quantitative Chemical Imaging. Analytical Chemistry, 2018, 90, 3775-3785.	6.5	20
146	Resonant-state expansion applied to three-dimensional open optical systems: Complete set of static modes. Physical Review A, 2019, 100 , .	2.5	20
147	Thermalization of free excitons in ZnSe quantum wells. Journal of Crystal Growth, 1998, 184-185, 795-800.	1.5	19
148	Enhancement of exchange interaction in ultrathin CdS/ZnS quantum structures. Solid State Communications, 1998, 106, 653-657.	1.9	19
149	Microcavity polariton linewidths in the weak-disorder regime. Physical Review B, 2000, 63, .	3.2	19
150	Homogeneous linewidth of self-assembled III–V quantum dots observed in single-dot photoluminescence. Physica E: Low-Dimensional Systems and Nanostructures, 2003, 17, 1-6.	2.7	19
151	Resonant-state expansion of light propagation in nonuniform waveguides. Physical Review A, 2017, 95, .	2.5	19
152	Quantitative Label-Free Imaging of Lipid Domains in Single Bilayers by Hyperspectral Coherent Raman Scattering. Analytical Chemistry, 2020, 92, 14657-14666.	6.5	19
153	Ultrafast absorption recovery dynamics of 1300 nm quantum dot saturable absorber mirrors. Applied Physics Letters, 2009, 95, 041101.	3 . 3	18
154	Comment on "Normalization of quasinormal modes in leaky optical cavities and plasmonic resonators― Physical Review A, 2017, 96, .	2.5	18
155	Fine Structure of Nearly Isotropic Bright Excitons in InP/ZnSe Colloidal Quantum Dots. Journal of Physical Chemistry Letters, 2019, 10, 5468-5475.	4.6	18
156	Quantitative Measurement of the Optical Cross Sections of Single Nano-objects by Correlative Transmission and Scattering Microspectroscopy. ACS Photonics, 2019, 6, 2149-2160.	6.6	18
157	Localized Biexcitons in Quasi-2D and Quasi-3D Systems. Physica Status Solidi (B): Basic Research, 1998, 206, 111-118.	1.5	17
158	Resonant Rayleigh scattering dynamics of excitons in single quantum wells. Physical Review B, 2003, 68, .	3.2	17
159	Role of interband and photoinduced absorption in the nonlinear refraction and absorption of resonantly excited PbS quantum dots around 1550 nm. Physical Review B, 2012, 85, .	3.2	17
160	Polarization-resolved ultrafast dynamics of the complex polarizability in single gold nanoparticles. Physical Chemistry Chemical Physics, 2013, 15, 4226.	2.8	17
161	Binding of biexcitons in GaAs/AlxGa1â^'xAs superlattices. Physical Review B, 1997, 55, 5284-5289.	3.2	16
162	Room-Temperature Near-Field Reflection Spectroscopy of Single Quantum Wells. Physica Status Solidi A, 1997, 164, 541-546.	1.7	16

#	Article	IF	CITATIONS
163	Electron and Hole Trions in Wide GaAs Quantum Wells. Physica Status Solidi (B): Basic Research, 2000, 221, 281-286.	1.5	16
164	Vectorial nonlinear coherent response of a strongly confined exciton–biexciton system. New Journal of Physics, 2013, 15, 055006.	2.9	16
165	Coherent coupling of individual quantum dots measured with phase-referenced two-dimensional spectroscopy: Photon echo versus double quantum coherence. Physical Review B, 2017, 96, .	3.2	16
166	Resonantly excited exciton dynamics in two-dimensional <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mi>MoSe</mml:mi><mml:mn>2<td>l:n3n≥ <td>าทไม_์กรนb></td></td></mml:mn></mml:msub></mml:math>	l :n3n ≥ <td>าทไม_์กรนb></td>	าทไ ม_์ก รนb>
167	Geometric frustration in polygons of polariton condensates creating vortices of varying topological charge. Nature Communications, 2021, 12, 2120.	12.8	16
168	Microwave-optical coupling via Rydberg excitons in cuprous oxide. Physical Review Research, 2022, 4, .	3.6	16
169	Negative-differential band-gap renormalization in type-II GaAs/AlAs superlattices. Physical Review B, 1995, 51, 1946-1949.	3.2	15
170	Exchange Interaction in II–VI Quantum Dots and Wells. Physica Status Solidi A, 1997, 164, 505-510.	1.7	15
171	Spin Relaxation without Coherence Loss: Fine-Structure Splitting of Localized Excitons. Physica Status Solidi (B): Basic Research, 2000, 221, 349-353.	1.5	15
172	Exciton states in self-assembled InAs/GaAs quantum dot molecules. Physica E: Low-Dimensional Systems and Nanostructures, 2004, 25, 249-260.	2.7	15
173	Refractive Index Dynamics and Linewidth Enhancement Factor in \$p\$-Doped InAs–GaAs Quantum-Dot Amplifiers. IEEE Journal of Quantum Electronics, 2009, 45, 579-585.	1.9	15
174	Coherent response of individual weakly confined exciton–biexciton systems. Journal of the Optical Society of America B: Optical Physics, 2012, 29, 1766.	2.1	15
175	Structure and zero-dimensional polariton spectrum of natural defects in GaAs/AlAs microcavities. Physical Review B, 2012, 86, .	3.2	15
176	Rydberg excitons in synthetic cuprous oxide <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mi>Cu</mml:mi><mml:mn>2O</mml:mn></mml:msub></mml:math> . Physical Review Materials, 2021, 5, .	ın 2x4mml:r	ท รแ ชb> <mml:เ< td=""></mml:เ<>
177	Narrow-band spectral hole burning in quantum dots. Journal of Luminescence, 1994, 60-61, 302-307.	3.1	14
178	Influence of the interface corrugation on the subband dispersions and the optical properties of (113)-oriented GaAs/AlAs superlattices. Physical Review B, 1996, 54, 10784-10799.	3.2	14
179	Coherent dynamics of bipolaritons in bulk CdS. Physical Review B, 2001, 64, .	3.2	14
180	Biexcitons in semiconductor microcavities. Semiconductor Science and Technology, 2003, 18, S351-S360.	2.0	14

#	Article	lF	Citations
181	Microcavity polaritonlike dispersion doublet in resonant Bragg gratings. Physical Review B, 2009, 80, .	3.2	14
182	Polariton states bound to defects in GaAs/AlAs planar microcavities. Physical Review B, 2012, 85, .	3.2	14
183	Ultrafast gain dynamics in InP quantum-dot optical amplifiers. Applied Physics Letters, 2010, 97, 211103.	3.3	13
184	Four-wave-mixing imaging and carrier dynamics of PbS colloidal quantum dots. Physical Review B, 2010, 82, .	3.2	13
185	Quantum optics, molecular spectroscopy and low-temperature spectroscopy: general discussion. Faraday Discussions, 2015, 184, 275-303.	3.2	13
186	The optical nanosizer – quantitative size and shape analysis of individual nanoparticles by high-throughput widefield extinction microscopy. Nanoscale, 2020, 12, 16215-16228.	5.6	13
187	Localized excitons in quantum wells show spin relaxation without coherence loss. Physica E: Low-Dimensional Systems and Nanostructures, 2001, 10, 40-44.	2.7	12
188	Biexcitonic Bound and Continuum States of Homogeneously and Inhomogeneously Broadened Exciton Resonances. Physica Status Solidi A, 2002, 190, 167-174.	1.7	12
189	Energy and momentum broadening of planar microcavity polaritons measured by resonant light scattering. Journal of Physics Condensed Matter, 2004, 16, S3645-S3652.	1.8	12
190	Vectorial four-wave mixing field dynamics from individual excitonic transitions. Physical Review B, 2008, 78, .	3.2	12
191	Suppression of cross-hatched polariton disorder in GaAs/AlAs microcavities by strain compensation. Applied Physics Letters, 2012, 101, 041114.	3.3	12
192	Effects of uniaxial pressure on polar whispering gallery modes in microspheres. Journal of Applied Physics, 2013, 113, .	2.5	12
193	Dynamic label-free imaging of lipid droplets and their link to fatty acid and pyruvate oxidation in mouse eggs. Journal of Cell Science, 2019, 132, .	2.0	12
194	Influence of the screening of piezo-fields on the carrier dynamics in CdS/CdSe superlattices. Journal of Crystal Growth, 1994, 138, 191-194.	1.5	11
195	Homogeneious linewidth and relaxation of excited hole states in II-VI quantum dots. Advanced Materials for Optics and Electronics, 1994, 3, 141-150.	0.4	11
196	Enhancement of Binding Energies and Polarized Emission of OD Biexcitons. Physica Status Solidi (B): Basic Research, 2001, 224, 379-384.	1.5	11
197	Biexciton Binding Energy in ZnSe Quantum Wells and Quantum Wires. Physica Status Solidi (B): Basic Research, 2002, 231, 11-18.	1.5	11
198	Density-matrix description of frequency-resolved secondary emission from quantum wells. Physica Status Solidi (B): Basic Research, 2003, 238, 494-497.	1.5	11

#	Article	IF	Citations
199	Multiphoton microscopy based on four-wave mixing of colloidal quantum dots. Applied Physics Letters, 2008, 93, 021114.	3.3	11
200	The role of p-doping in the gain dynamics of InAs/GaAs quantum dots at low temperature. Applied Physics Letters, 2009, 94, 041110.	3.3	11
201	Dephasing of excitons and multiexcitons in undoped andp-doped InAs/GaAs quantum dots-in-a-well. Physical Review B, 2010, 82, .	3.2	11
202	Coherence dynamics and quantum-to-classical crossover in an exciton–cavity system in the quantum strong coupling regime. New Journal of Physics, 2013, 15, 045013.	2.9	11
203	Sparse sampling for fast hyperspectral coherent anti-Stokes Raman scattering imaging. Optics Express, 2014, 22, 4021.	3.4	11
204	Optical micro-spectroscopy of single metallic nanoparticles: quantitative extinction and transient resonant four-wave mixing. Faraday Discussions, 2015, 184, 305-320.	3.2	11
205	Background-Free 3D Nanometric Localization and Sub-nm Asymmetry Detection of Single Plasmonic Nanoparticles by Four-Wave Mixing Interferometry with Optical Vortices. Physical Review X, 2017, 7, .	8.9	11
206	Level-statistics in the resonant Rayleigh scattering dynamics of monolayer-split excitons. Physica Status Solidi (B): Basic Research, 2003, 238, 486-493.	1.5	10
207	Four-wave-mixing microscopy reveals non-colocalisation between gold nanoparticles and fluorophore conjugates inside cells. Nanoscale, 2020, 12, 4622-4635.	5.6	10
208	Phonon interaction of single excitons in CdSe/ZnSe quantum dot structures. Journal of Luminescence, 1999, 83-84, 305-308.	3.1	9
209	Quantum Dot Emission Confined by a Spherical Photonic Dot. Physica Status Solidi (B): Basic Research, 2002, 229, 423-426.	1.5	9
210	Polariton correlation in microcavities produced by parametric scattering. Physica Status Solidi (B): Basic Research, 2005, 242, 2260-2270.	1.5	9
211	Ultrafast carrier dynamics in p-doped InAs/GaAs quantum-dot amplifiers. IET Optoelectronics, 2007, 1, 298-302.	3.3	9
212	Live Cell Imaging with Chemical Specificity Using Dual Frequency CARS Microscopy. Methods in Enzymology, 2012, 504, 273-291.	1.0	9
213	Plasmonics, Tracking and Manipulating, and Living Cells: general discussion. Faraday Discussions, 2015, 184, 451-473.	3.2	9
214	Enhanced light collection from a gallium nitride color center using a near index-matched solid immersion lens. Applied Physics Letters, 2022, 120, .	3.3	9
215	Luminescence dynamics in type-II GaAs/AlAs superlattices near the type-I to type-II crossover. Physical Review B, 1996, 54, 14589-14594.	3.2	8
216	Nonlinear Response of Localized Excitons: Effects of the Excitation-Induced Dephasing. Physica Status Solidi A, 1997, 164, 61-65.	1.7	8

#	Article	IF	CITATIONS
217	Seeding of Polariton Stimulation in a Homogeneously Broadened Microcavity. Physica Status Solidi (B): Basic Research, 2000, 221, 115-120.	1.5	8
218	Moving speckles in the Rayleigh scattering of excitons in potential gradients. Physical Review B, 2004, 69, .	3.2	8
219	Fourâ€wave mixing from individual excitons: Intensity dependence and imaging. Physica Status Solidi (B): Basic Research, 2009, 246, 820-823.	1.5	8
220	Wide-Field Imaging of Single-Nanoparticle Extinction with Sub- <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:msup><mml:mrow><mml:mi>nm</mml:mi></mml:mrow><mml:mrow><mm .<="" 2018,="" 9,="" applied,="" physical="" review="" sensitivity.="" td=""><td>ıl:3.8 1:mm>2<td>mml:mn></td></td></mm></mml:mrow></mml:msup></mml:mrow></mml:math>	ıl:3.8 1:mm>2 <td>mml:mn></td>	mml:mn>
221	Invited Article: Heterodyne dual-polarization epi-detected CARS microscopy for chemical and topographic imaging of interfaces. APL Photonics, 2018, 3, 092402.	5.7	8
222	Applying the resonant-state expansion to realistic materials with frequency dispersion. Physical Review B, 2020, 101, .	3.2	8
223	Identifying subpopulations in multicellular systems by quantitative chemical imaging using label-free hyperspectral CARS microscopy. Analyst, The, 2021, 146, 2277-2291.	3.5	8
224	Brillouin–Raman microspectroscopy for the morpho-mechanical imaging of human lamellar bone. Journal of the Royal Society Interface, 2022, 19, 20210642.	3.4	8
225	Gain and dynamics of excitons in MOVPE-grown ZnSe/ZnSxSe1 â^'x heterostructures. Advanced Materials for Optics and Electronics, 1994, 3, 51-55.	0.4	7
226	Highly confined T-shaped quantum wires. Superlattices and Microstructures, 1997, 22, 217-220.	3.1	7
227	Measuring Excitonic Coherence in Nanostructures: Time-Resolved Speckle Analysis versus Four-Wave Mixing. Physica Status Solidi A, 2000, 178, 13-20.	1.7	7
228	Dephasing and interaction of excitons in CdSe/ZnSe islands. Journal of Crystal Growth, 2000, 214-215, 747-751.	1.5	7
229	Instantaneous Rayleigh scattering from excitons localized in monolayer islands. Physical Review B, 2000, 61, R10555-R10558.	3.2	7
230	Enhanced confinement energy in strained asymmetric T-shaped quantum wires. Journal of Crystal Growth, 2001, 227-228, 966-969.	1.5	7
231	Dephasing of excited-state excitons in InGaAs quantum dots. Physica Status Solidi (B): Basic Research, 2006, 243, 3890-3894.	1.5	7
232	Measurement of the ultrafast gain recovery in InGaAs/GaAs quantum dots: Beyond a mean-field description. Physical Review B, 2010, 82, .	3.2	7
233	Quadruplex CARS microâ€spectroscopy. Journal of Raman Spectroscopy, 2013, 44, 255-261.	2.5	7

High-resolution nanosecond spectroscopy of even-parity Rydberg excitons in <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:msub><mml:mi>Cu</mml:mi><mml:mn></mml:mn></mml:math>> nathvariant="normal">O</mml:mi></mml:mrow></mml:math>> Physical Review B, 2022, 105, .

#	Article	IF	CITATIONS
235	Spontaneous and stimulated photoluminescence of CdSe/CdS Stark superlattices. Superlattices and Microstructures, 1994, 15, 463-465.	3.1	6
236	Polarization contrast in reflection near-field optical microscopy with uncoated fibre tips. Journal of Microscopy, 1999, 194, 500-506.	1.8	6
237	Phase Coherent Photorefractivity in ZnSe Single Quantum Wells. Physical Review Letters, 2005, 94, 147402.	7.8	6
238	Parametric scattering of microcavity polaritons into ghost branches. Physical Review B, 2015, 92, .	3.2	6
239	Population dynamics and dephasing of excitons and electron-hole pairs in polytype wurtzite/zinc-blende InP nanowires. Physical Review B, 2017, 95, .	3.2	6
240	Emission dynamics of hybrid plasmonic gold/organic GaN nanorods. Nanotechnology, 2017, 28, 505710.	2.6	6
241	Labelâ€free quantitative chemical imaging and classification analysis of adipogenesis using mouse embryonic stem cells. Journal of Biophotonics, 2018, 11, e201700219.	2.3	6
242	Sizing individual dielectric nanoparticles with quantitative differential interference contrast microscopy. Analyst, The, 2022, 147, 1567-1580.	3.5	6
243	Anisotropic quantum boxes in corrugated superlattices. Physical Review B, 1996, 53, 15473-15476.	3.2	5
244	3D versus 1D Quantum Confinement in Coherently Strained CdS/ZnS Quantum Structures. Physica Status Solidi (B): Basic Research, 1998, 206, 501-506.	1.5	5
245	Comment on "High efficient biexciton photoluminescence observed from single ZnCdSe quantum wells with continuous wave cold carrier generation―[Appl. Phys. Lett. 74, 1138 (1999)]. Applied Physics Letters, 1999, 75, 2150-2150.	3.3	5
246	Coherent Light-Matter Interaction in InGaAs Quantum Dots: Dephasing Time and Optical Rabi Oscillations. Physica Status Solidi (B): Basic Research, 2002, 233, 391-400.	1.5	5
247	Speckle Analysis of Resonant Secondary Emission. Physica Status Solidi (B): Basic Research, 2002, 234, 84-95.	1.5	5
248	Sloped and bow-tie speckles from a warped energetic landscape. Physica Status Solidi C: Current Topics in Solid State Physics, 2004, 1, 489-492.	0.8	5
249	Ultrafast gain recovery dynamics of the excited state in InGaAs quantum dot amplifiers. , 2005, , .		5
250	Dual/differential coherent anti-Stokes Raman scattering module for multiphoton microscopes with a femtosecond Ti:sapphire oscillator. Journal of Biomedical Optics, 2013, 18, 1.	2.6	5
251	Quantitative Imaging of B1 Cyclin Expression Across the Cell Cycle Using Green Fluorescent Protein Tagging and Epifluorescence. Cytometry Part A: the Journal of the International Society for Analytical Cytology, 2020, 97, 1066-1072.	1.5	5
252	Quantitative optical microspectroscopy, electron microscopy, and modelling of individual silver nanocubes reveal surface compositional changes at the nanoscale. Nanoscale Advances, 2020, 2, 2485-2496.	4.6	5

#	Article	IF	CITATIONS
253	Many-body effects in type-II quantum-well and quantum-well-wire superlattices. Superlattices and Microstructures, 1994, 15, 47.	3.1	4
254	Polarization anisotropies in (113)-oriented GaAs/AlAs Superlattices. Nuovo Cimento Della Societa Italiana Di Fisica D - Condensed Matter, Atomic, Molecular and Chemical Physics, Biophysics, 1995, 17, 1561-1565.	0.4	4
255	Thermalization of Hot Free Excitons in ZnSe-Based Quantum Wells. Physica Status Solidi (B): Basic Research, 1997, 204, 195-197.	1.5	4
256	Coherent Exciton and Biexciton Nonlinearities in Semiconductor Nanostructures: Effects of Disorder. Materials Science Forum, 1998, 297-298, 73-78.	0.3	4
257	Determining the structure of semiconductor heterointerfaces by excitonic optical spectra. Physica Status Solidi C: Current Topics in Solid State Physics, 2004, 1, 501-505.	0.8	4
258	Roadmap on bio-nano-photonics. Journal of Optics (United Kingdom), 2021, 23, 073001.	2.2	4
259	Quantification of the nonlinear susceptibility of the hydrogen and deuterium stretch vibration for biomolecules in coherent Raman microâ€spectroscopy. Journal of Raman Spectroscopy, 2021, 52, 1540-1551.	2.5	4
260	Coherent dynamics of interwell excitons in GaAs/AlxGa1â^xAs superlattices. Physical Review B, 1997, 55, 7743-7748.	3.2	3
261	Interaction-induced dephasing of excitons in wide ZnSe/ZnMgSe single quantum wells. Physica E: Low-Dimensional Systems and Nanostructures, 1998, 2, 82-86.	2.7	3
262	Coherent versus incoherent dynamics in InAs quantum-dot active wave guides. Journal of Applied Physics, 2001, 89, 6542-6544.	2.5	3
263	Radiative Coupling of Excitons in ZnSe Double Quantum Wells. Physica Status Solidi A, 2002, 190, 861-866.	1.7	3
264	Dephasing of biexcitons in InGaAs quantum dots. Physica Status Solidi (B): Basic Research, 2003, 238, 593-600.	1.5	3
265	Dephasing Processes and Carrier Dynamics in (In,Ga)As Quantum Dots. Topics in Applied Physics, 0, , 237-268.	0.8	3
266	Fabrication and optical properties of thin silicaâ€coated CdSe/ZnS quantum dots. Physica Status Solidi (A) Applications and Materials Science, 2009, 206, 2822-2825.	1.8	3
267	CilibrizzietÂal.Reply:. Physical Review Letters, 2015, 115, 089402.	7.8	3
268	Functional imaging of a model unicell: Spironucleus vortens as an anaerobic but aerotolerant flagellated protist. Advances in Microbial Physiology, 2020, 76, 41-79.	2.4	3
269	Biofunctionalisation of gallium arsenide with neutravidin. Journal of Colloid and Interface Science, 2022, 608, 2399-2406.	9.4	3
270	Influence of disorder on a Bragg microcavity. Journal of the Optical Society of America B: Optical Physics, 2021, 38, 139.	2.1	3

#	Article	IF	CITATIONS
271	Hyperspectral CARS microscopy and quantitative unsupervised analysis of deuterated and non-deuterated fatty acid storage in human cells. Journal of Chemical Physics, 2021, 155, 224202.	3.0	3
272	A primary effect of palmitic acid on mouse oocytes is the disruption of the structure of the endoplasmic reticulum. Reproduction, 2022, 163, 45-56.	2.6	3
273	Optical resonances in graded index spheres: A resonant-state-expansion study and analytic approximations. Physical Review A, 2022, 105 , .	2.5	3
274	Wurtzite-type CdS and CdSe epitaxial layers II. Nonlinear optical properties. Journal of Crystal Growth, 1994, 141, 75-80.	1.5	2
275	Influence of the corrugation on the optical properties of (1 13) oriented GaAs/AlAs superlattices. Journal of Luminescence, 1997, 72-74, 353-354.	3.1	2
276	Probing Slow Polariton Propagation by Bipolaritons. Physica Status Solidi (B): Basic Research, 2000, 221, 467-472.	1.5	2
277	InAlGaAs/AlGaAs quantum wells: line widths, transition energies and segregation. Microelectronic Engineering, 2000, 51-52, 257-264.	2.4	2
278	Directional Scattering Dynamics of Microcavity Polaritons. Physica Status Solidi A, 2002, 190, 327-332.	1.7	2
279	Coherent Dynamics of Biexcitons in a Semiconductor Microcavity. Physica Status Solidi A, 2002, 190, 383-387.	1.7	2
280	All spins under control. Nature Materials, 2006, 5, 519-520.	27.5	2
281	Novel multi-photon microscopy based on resonant nonlinear optics of colloidal quantum dots. Physica Status Solidi C: Current Topics in Solid State Physics, 2009, 6, 916-919.	0.8	2
282	Triply surface-plasmon resonant four-wave mixing imaging of gold nanoparticles. Proceedings of SPIE, 2011, , .	0.8	2
283	Quantitative morphometric analysis of single gold nanoparticles by optical extinction microscopy: Material permittivity and surface damping effects. Journal of Chemical Physics, 2021, 154, 044702.	3.0	2
284	Biexciton Binding Energy in ZnSe Quantum Wells and Quantum Wires., 2002, 231, 11.		2
285	Biexcitonic Bound and Continuum States of Homogeneously and Inhomogeneously Broadened Exciton Resonances., 2002, 190, 167.		2
286	Quantum Mollow Quadruplet in Nonlinear Cavity QED. Physical Review Letters, 2022, 128, 123602.	7.8	2
287	Asymmetric dual Bloch point domain walls in cylindrical magnetic nanowires. APL Materials, 2022, 10, 071105.	5.1	2
288	Hot excitons in ZnSe quantum wells. Journal of Luminescence, 1997, 72-74, 292-293.	3.1	1

#	Article	IF	Citations
289	Coherent Interaction of Three-Dimensionally Confined Electron–Hole Pairs with LO-Phonons. Physica Status Solidi (B): Basic Research, 1997, 204, 42-44.	1.5	1
290	Room-temperature near-field reflection spectroscopy of semiconductor nanostructures. , 1999, , 505-517.		1
291	Temperature Dependence of the Polariton Linewidth in a GaAs Quantum Well Microcavity. Physica Status Solidi (B): Basic Research, 2000, 221, 143-146.	1.5	1
292	Room-Temperature Dephasing in InAs Quantum Dots. Physica Status Solidi A, 2000, 178, 337-340.	1.7	1
293	Biexcitons or bipolaritons in a semiconductor microcavity?., 0, , .		1
294	Temperature-Dependent Time-Resolved Four-Wave Mixing in InGaAs Quantum Dots. Physica Status Solidi A, 2002, 190, 517-521.	1.7	1
295	Coherent dynamics in InGaAs quantum dots and quantum dot molecules. Physica E: Low-Dimensional Systems and Nanostructures, 2005, 26, 400-407.	2.7	1
296	Exciton-polaritons in Bragg gratings. Journal of Physics: Conference Series, 2010, 210, 012034.	0.4	1
297	Up on the Jaynes-Cummings ladder of an exciton-cavity system. Proceedings of SPIE, 2010, , .	0.8	1
298	MasiaetÂal.Reply:. Physical Review Letters, 2012, 109, .	7.8	1
299	Superresolution techniques, biophysics with nanostructures, and fluorescence energy transfer: general discussion. Faraday Discussions, 2015, 184, 143-162.	3.2	1
300	Optimizing the Drude-Lorentz model for material permittivity: Examples for semiconductors. , 2017, , .		1
301	Coherent Raman Scattering Microscopy: Technology Developments and Biological Applications. , 2018, , .		1
302	Comment on "Observation of Fourier transform limited lines in hexagonal boron nitride― Physical Review B, 2019, 100, .	3.2	1
303	Radiative Coupling of Excitons in ZnSe Double Quantum Wells. , 2002, 190, 861.		1
304	Speckle-correlation spectroscopy on localized spin-split exciton states in quantum wells. Springer Proceedings in Physics, 2001, , 523-524.	0.2	1
305	Imaging lipids in living mammalian oocytes and early embryos by coherent Raman scattering microscopy. , 2019, , .		1
306	Imaging and tracking single plasmonic nanoparticles in 3D background-free with four-wave mixing interferometry. , 2019, , .		1

#	Article	IF	CITATIONS
307	Quantitative high-throughput optical sizing of individual colloidal nanoparticles by wide-field imaging extinction microscopy. , 2019, , .		1
308	Negative differential gap renormalization in typeâ€l superlattices. Physica Status Solidi (B): Basic Research, 1995, 188, 571-579.	1.5	0
309	Optical Nonlinearities in ZnSe/ZnSSe Heterostructures. Materials Science Forum, 1995, 182-184, 203-206.	0.3	0
310	Luminescence dynamics in GaAs/AlAs superlattices near the type-I/type-II crossover. Journal of Luminescence, 1997, 72-74, 350-352.	3.1	0
311	<title>Ultrafast dynamics of confined and localized excitons in low-dimensional semiconductors</title> ., 1999,,.		0
312	Excitonic coherence in semiconductor nanostructures measured by speckle analysis., 1999,, 463-472.		0
313	Theory of Propagation and Scattering of Exciton-Polaritons in Quantum Wells. Physica Status Solidi A, 2002, 190, 703-707.	1.7	0
314	Self-induced transparency in InGaAs quantum dot waveguides. Physica Status Solidi C: Current Topics in Solid State Physics, 2003, 0, 1548-1551.	0.8	0
315	Quantum Dots: Building Blocks of Quantum Devices?. Advances in Solid State Physics, 2004, , 191-212.	0.8	0
316	Observation of an unusual temperature dependence of the initial decoherence time in quantum dots. Physica Status Solidi C: Current Topics in Solid State Physics, 2005, 2, 3167-3170.	0.8	0
317	Transient four-wave mixing of single exciton states: Exciton-exciton interaction and Rabi oscillations. AIP Conference Proceedings, 2005, , .	0.4	0
318	Coherent coupling and optical manipulation of individual excitonic states. , 0, , .		0
319	Polariton Correlation in Microcavities Produced by Parametric Scattering. , 0, , 171-185.		0
320	Sensitive optical biosensor based on whispering-gallery modes of dielectric microspheres. , 2007, , .		0
321	Ultrafast Carrier Dynamics in p-doped InGaAs Quantum Dot Amplifiers. , 2007, , .		0
322	Quantum complementarity of microcavity polaritons. , 2007, , .		0
323	Ultrafast nonlinear spectroscopy of individual quantum dots: imaging and coherent coupling. Proceedings of SPIE, 2008, , .	0.8	0
324	Ultrafast pulse-pair amplification in InGaAs quantum-dot amplifiers. , 2009, , .		0

#	Article	IF	CITATIONS
325	CARS Microscopy using linearly-chirped ultrafast laser pulses. , 2009, , .		O
326	Four-wave mixing of gold nanoparticles for three-dimensional cell microscopy. , 2009, , .		0
327	CARS microscopy using linearly chirped ultrafast laser pulses. , 2009, , .		0
328	Modelling the response of whispering-gallery-mode optical resonators for biosensing applications. , 2009, , .		0
329	Modelling the response of whispering-gallery-mode optical resonators for biosensing applications. , 2009, , .		0
330	Whispering-gallery modes in dielectric microspheres for biosensing applications. , 2009, , .		0
331	Multi-photon microscopy based on resonant four-wave mixing of colloidal quantum dots., 2009,,.		0
332	Gain dynamics in p-doped InGaAs quantum dot amplifiers from room to cryogenic temperatures. , 2009,		0
333	Ultrafast conditional carrier dynamics in semiconductor quantum dots. Proceedings of SPIE, 2011, , .	0.8	0
334	Ultrafast exciton dephasing in PbS colloidal quantum dots. , 2011, , .		0
335	Differential CARS microscopy with linearly chirped femtosecond laser pulses. Proceedings of SPIE, 2011, , .	0.8	0
336	A study of the formation of dark-solitons in semiconductor microcavities., 2014,,.		0
337	Measure the heisenberg interaction in a polariton dyad. , 2017, , .		0
338	Correlated photons from microcavity polariton parametric scattering. , 2017, , .		0
339	Optical Control of Coupling in Phase-Locked Polariton Dyads. , 2019, , .		0
340	Simultaneous microscopic imaging of thickness and refractive index of thin layers by heterodyne interferometric reï¬,ectometry (HiRef). Journal Physics D: Applied Physics, O, , .	2.8	0
341	Quantum dots for ultrafast amplifiers. , 2001, , .		0
342	Resonant Rayleigh scattering of exciton-polaritons in multiple quantum well structures. Springer Proceedings in Physics, 2001, , 521-522.	0.2	0

#	Article	IF	Citations
343	Biexcitons or bipolaritons in a semiconductor micro cavity?. Springer Proceedings in Physics, 2001, , 681-682.	0.2	0
344	Probing Localized Excitons by Speckle Analysis of Resonant Light Scattering. Springer Series in Solid-state Sciences, 2004, , 47-72.	0.3	0
345	Coherent dynamics of one and two-photon states in a strongly coupled single quantum dot-cavity system. , 2009, , .		0
346	Binding of Biexcitons in GaAs/AlGaAs Superlattices. Acta Physica Polonica A, 1997, 92, 923-928.	0.5	0
347	Coherent Exciton Dynamics in Colloidal Quantum Dots. , 0, , .		0
348	Label-free volumetric quantitative imaging of human osteosarcoma cells by hyperspectral coherent anti-Stokes Raman scattering. , 2019, , .		0
349	Propagation loss in photonic crystal waveguides embedding InAs/GaAs quantum dots determined by direct spectral imaging. , 2019, , .		0
350	Measuring sub-nanometre thickness changes during phase transitions of supported lipid bilayers with quantitative differential interference contrast microscopy., 2019,,.		0
351	Heterodyne dual-polarization epi-detected CARS microscopy for chemical and topographic imaging of interfaces. , 2019, , .		0
352	Optimisation of multimodal coherent anti-Stokes Raman scattering microscopy for the detection of isotope-labelled molecules. , $2019, \ldots$		0
353	Coherent Exciton Dynamics in Colloidal Quantum Dots. , 0, , .		0
354	Background-free 3D four-wave mixing microscopy of single gold nanoparticles inside biological systems., 2021,,.		0
355	Transient Four-wave Mixing of Excitons in Quantum Dots from Ensembles and Individuals. , 0, , 269-319.		O