Seydi DoÄžn

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2291606/publications.pdf

Version: 2024-02-01

64	11,982	24	56
papers	citations	h-index	g-index
65	65	65	13557 citing authors
all docs	docs citations	times ranked	

#	Article	IF	Citations
1	A comprehensive review of ZnO materials and devices. Journal of Applied Physics, 2005, 98, 041301.	2.5	9,857
2	Excitonic fine structure and recombination dynamics in single-crystallineZnO. Physical Review B, 2004, 70, .	3.2	662
3	Photoresponse of n-ZnOâ^•p-SiC heterojunction diodes grown by plasma-assisted molecular-beam epitaxy. Applied Physics Letters, 2005, 86, 241108.	3.3	140
4	Effect of Nb doping on structural, electrical and optical properties of spray deposited SnO2 thin films. Superlattices and Microstructures, 2013, 56, 107-116.	3.1	98
5	4H–SiC photoconductive switching devices for use in high-power applications. Applied Physics Letters, 2003, 82, 3107-3109.	3.3	93
6	Investigation of structural and optical properties of ZnO films co-doped with fluorine and indium. Superlattices and Microstructures, 2012, 52, 107-115.	3.1	77
7	Growth and characterization of Ag/n-ZnO/p-Si/Al heterojunction diode by sol–gel spin technique. Journal of Alloys and Compounds, 2013, 550, 129-132.	5.5	69
8	Investigation of forward and reverse current conduction in GaN films by conductive atomic force microscopy. Applied Physics Letters, 2004, 84, 4150-4152.	3.3	56
9	Effectiveness of TiN porous templates on the reduction of threading dislocations in GaN overgrowth by organometallic vapor-phase epitaxy. Applied Physics Letters, 2005, 86, 043108.	3.3	55
10	Temperature variation of current–voltage characteristics of Au/Ni/n-GaN Schottky diodes. Physica E: Low-Dimensional Systems and Nanostructures, 2009, 41, 646-651.	2.7	53
11	Effects of hydrostatic and uniaxial stress on the Schottky barrier heights of Ga-polarity and N-polarity n-GaN. Applied Physics Letters, 2004, 84, 2112-2114.	3.3	45
12	Surface band bending in as-grown and plasma-treated n-type GaN films using surface potential electric force microscopy. Applied Physics Letters, 2004, 84, 3070-3072.	3.3	42
13	An investigation of the Nb doping effect on structural, morphological, electrical and optical properties of spray deposited F doped SnO ₂ films. Physica Scripta, 2013, 87, 035602.	2.5	42
14	Structural characterizations and optical properties of InSe and InSe:Ag semiconductors grown by Bridgman/Stockbarger technique. Physica E: Low-Dimensional Systems and Nanostructures, 2014, 64, 106-111.	2.7	39
15	The effect of hydrogen etching on 6H-SiC studied by temperature-dependent current-voltage and atomic force microscopy. Applied Physics Letters, 2004, 85, 1547-1549.	3.3	38
16	Improvement of n-GaN Schottky diode rectifying characteristics using KOH etching. Applied Physics Letters, 2003, 82, 3556-3558.	3.3	31
17	The effects of the temperature and annealing on current–voltage characteristics of Ni/n-type 6H–SiC Schottky diode. Microelectronic Engineering, 2008, 85, 631-635.	2.4	31

Fabrication and characterization of All<scp>C<|scp>u<sub>2<|sub><scp>Z<|scp>n<scp>S<|scp>n<scp>S<|scp>cop>d<|scp>l<scp>S<|scp>l<scp>l<scp>l<scp>l<scp>l<scp>l<scp>l<scp>l<scp>l<scp>l<scp>l<scp>l<scp>l<scp>l<scp>l<scp>l<scp>l<scp>l<scp>l<scp>l<scp>l<scp>l<scp>l<scp>l<scp>l<scp>l<scp>l<scp>l<scp>l<scp>l<scp>l<scp>l<scp>l<scp>l<scp>l<scp>l<scp>l<scp>l<scp>l<scp>l<scp>l<scp>l<scp>l<scp>l<scp>l<scp>l<scp>l<scp>l<scp>l<scp>l<scp>l<scp>l<scp>l<scp>l<scp>l<scp>l<scp>l<scp>l<scp>l<scp>l<scp>l<scp>l<scp>l<scp>l<scp>l<scp>l<scp>l<scp>l<scp>l<scp>l<scp>l<scp>l<scp>l<scp>l<scp>l<scp>l<scp>l<scp>l<scp>l<scp>l<scp>l<scp>l<scp>l<scp>l<scp>l<scp>l<scp>l<scp>l<scp>l<scp>l<scp>l<scp>l<scp>l<scp>l<scp>l<scp>l<scp>l<scp>l<scp>l<scp>l<scp>l<scp>l<scp>l<scp>l<scp>l<scp>l<scp>l<scp>l<scp>l<scp>l<scp>l<scp>l<scp>l<scp>l<scp>l<scp>l<scp>l<scp>l<scp>l<scp>l<scp>l<scp>l<scp>l<scp>l<scp>l<scp>l<scp>l<scp>l<scp>l<scp>l<scp>l<scp>l<scp>l<scp>l<scp>l<scp>l<scp>l<scp>l<scp>l<scp>l<scp>l<scp>l<scp>l<scp>l<scp>l<scp>l<scp>l<scp>l<scp>l<scp>l<scp>l<scp>l<scp>l<scp>l<scp>l<scp>l<scp>l<scp>l<scp>l<scp>l<scp>l<scp>l<scp>l<scp>l<scp>l<scp>l<scp>l<scp>l<scp>l<scp>l<scp>l<scp>l<scp>l<scp>l<scp>l<scp>l<scp>l<scp>l<scp>l<scp>l<scp>l<scp>l<scp>l<scp>l<scp>l<scp>l<scp>l<scp>l<scp>l<scp>l<scp>l<scp>l<scp>l<scp>l<scp>l<scp>l<scp>l<scp>l<scp>l<scp>l<scp>l<scp>l<scp>l<scp>l<scp>l<scp>l<scp>l<scp>l<scp>l<scp>l<scp>l<scp>l<scp>l<scp>l<scp>l<scp>l<scp>l<scp>l<scp>l<scp>l<scp>l<scp>l<scp>l<scp>l<scp>l<scp>l<scp>l<scp>l<scp>l<scp>l<scp>l<scp>l<scp>l<scp>l<scp>l<scp>l<scp>l<scp>l<scp>l<scp>l<scp>l<scp>l<scp>l<scp>l<scp>l<scp>l<scp>l<scp>l<scp>l<scp>l<scp>l<scp>l<scp>l<scp>l<scp>l<scp>l<scp>l<scp>l<scp>l<scp>l<scp>l<scp>l<scp>l<scp>l<scp>l<scp>l<scp>l<scp>l<scp>l<scp>l<scp>l<scp>l<scp>l<scp>l<scp>l<scp>l<scp>l<scp>l<scp>l<scp>l<scp>l<scp>l<scp>l<scp>l<scp>l<scp>l<scp>l<scp>l<scp>l<scp>l<scp>l<scp>l<scp>l<scp>l<scp>l<scp>l<scp>l<scp>l<scp>l<scp>l<scp>l<scp>l<scp>l<scp>l<scp>l<scp>l<scp>l<scp>l<scp>l<scp>l<scp>l<scp>l<scp>l<scp>l<scp>l<scp>l<scp>l<scp>l<scp>l<scp>l<scp 18

#	Article	IF	Citations
19	Effect of n+-GaN subcontact layer on 4H–SiC high-power photoconductive switch. Applied Physics Letters, 2005, 86, 261108.	3.3	27
20	W doped SnO2 growth via sol–gel routes and characterization: Nanocubes. Optik, 2013, 124, 4827-4831.	2.9	27
21	The barrier-height inhomogeneity in identically prepared Ni/n-type 6H-SiC Schottky diodes. Applied Physics A: Materials Science and Processing, 2008, 91, 337-340.	2.3	26
22	Capacitance and conductance–frequency characteristics of Au–Sb/p-GaSe:Gd Schottky barrier diode. Vacuum, 2011, 85, 798-801.	3.5	26
23	A study on characterization of Al/ZnS/p-Si/Al heterojunction diode synthesized by sol–gel technique. Materials Letters, 2013, 102-103, 106-108.	2.6	26
24	Growth and Temperature Dependence of Optical Properties of Er Doped and Undoped n-Type InSe. Japanese Journal of Applied Physics, 1999, 38, 5133-5136.	1.5	25
25	GaN/AlGaN back-illuminated multiple-quantum-well Schottky barrier ultraviolet photodetectors. Solid-State Electronics, 2003, 47, 1401-1408.	1.4	24
26	Forward-current electroluminescence from GaN/ZnO double heterostructure diode. Solid-State Electronics, 2005, 49, 1693-1696.	1.4	24
27	High efficiency n-ZnO/p-SiC heterostructure photodiodes grown by plasma-assisted molecular-beam epitaxy. Superlattices and Microstructures, 2005, 38, 439-445.	3.1	22
28	Surface charging and current collapse in an AlGaNâ [•] GaN heterostructure field effect transistor. Applied Physics Letters, 2005, 86, 083506.	3.3	21
29	Electric field influence on absorption measurement in InSe single crystal. Physica E: Low-Dimensional Systems and Nanostructures, 2003, 16, 274-279.	2.7	20
30	Evaluation of Structural and Optical Properties of Mn-Doped ZnO Thin Films Synthesized by Sol-Gel Technique. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2012, 43, 5088-5095.	2.2	19
31	Characteristic evaluation on spray-deposited WFTO thin films as a function of W doping ratio. Rare Metals, 2014, 33, 433-441.	7.1	18
32	Convertibility of conductivity type in reactively sputtered ZnO thin films. Physica Status Solidi A, 2003, 195, 165-170.	1.7	16
33	Thermal stability of electron traps in GaN grown by metalorganic chemical vapor deposition. Applied Physics Letters, 2004, 85, 4058-4060.	3.3	15
34	A study of GaN regrowth on the micro-facetted GaN template formed by in-situ thermal etching. Physica Status Solidi (A) Applications and Materials Science, 2005, 202, 718-721.	1.8	15
35	Observation of surface charging at the edge of a Schottky contact. IEEE Electron Device Letters, 2006, 27, 211-213.	3.9	14
36	Comparison of deep levels in GaN grown by MBE, MOCVD, and HVPE. , 2005, , .		13

#	Article	IF	CITATIONS
37	Electrical characterization of Ag/p-GaSe:Gd schottky barrier diodes. Physica E: Low-Dimensional Systems and Nanostructures, 2010, 42, 1958-1962.	2.7	12
38	Urbach tail and electric field influence on optical properties of InSe and InSe:Er single crystals. Applied Physics A: Materials Science and Processing, 2008, 90, 479-485.	2.3	11
39	Structural and optical properties of ZnO thin films by the spin coating Sol-Gel method. Journal of Sol-Gel Science and Technology, 2011, 60, 66-70.	2.4	11
40	Electrical characteristics and inhomogeneous barrier analysis of Au–Be/p-InSe:Cd Schottky barrier diodes. Microelectronic Engineering, 2009, 86, 106-110.	2.4	10
41	Temperature dependent capacitance and DLTS studies of Ni/n-type 6H-SiC Schottky diode. Current Applied Physics, 2009, 9, 1181-1185.	2.4	10
42	In situ optical assessment of semi-insulating iron doped InP grown by liquid encapsulated Czochralski process. Journal of Applied Physics, 1999, 85, 6777-6781.	2.5	8
43	Determination of the carrier concentration in InGaAsNâ [•] GaAs single quantum wells using Raman scattering. Applied Physics Letters, 2004, 85, 4905-4907.	3.3	8
44	Direct recognition of non-radiative recombination centers in semi-insulating LEC InP:Fe using double excitation photoluminescence. Journal of Luminescence, 2008, 128, 232-238.	3.1	8
45	p-GaN-i-GaN/AlGaN multiple-quantum well n-AlGaN back-illuminated ultraviolet detectors. Journal of Electronic Materials, 2003, 32, 307-311.	2.2	7
46	Characterization of MOCVD grown GaN on porous SiC templates. Physica Status Solidi C: Current Topics in Solid State Physics, 2005, 2, 2087-2090.	0.8	7
47	Temperature-dependent electrical characterization of nitrogen-doped ZnO thin film: vacuum annealing effect. Physica Scripta, 2009, 79, 035701.	2.5	7
48	InAlN/GaN heterostructure field-effect transistors on Fe-doped semi-insulating GaN substrates. Journal of Vacuum Science and Technology B:Nanotechnology and Microelectronics, 2010, 28, 908-911.	1.2	7
49	Development of a photovoltaic panel emulator and LabVIEWâ€based application platform. Computer Applications in Engineering Education, 2020, 28, 1291-1310.	3.4	7
50	Reduction of threading dislocations in GaN overgrowth by MOCVD on TiN porous network templates. Physica Status Solidi (A) Applications and Materials Science, 2005, 202, 749-753.	1.8	5
51	Design of a multi-channel quartz crystal microbalance data acquisition system. Measurement Science and Technology, 2018, 29, 075009.	2.6	5
52	Anomalous Behaviour of Galvanomagnetic Effects in Very Lightly n-Type Bulk GaAs: Possible Role of Reverse-Contrast Centres. Physica Status Solidi A, 1999, 174, 467-475.	1.7	4
53	Temperature Dependence of Magnetoresistance and Hall Effect for Ho Doped n-Type InSe. Physica Scripta, 2000, 62, 92-96.	2.5	4
54	Detection and Imaging of Underground Objects for Distinguishing Explosives by Using a Fluxgate Sensor Array. Applied Sciences (Switzerland), 2019, 9, 5415.	2.5	4

#	Article	IF	Citations
55	Determination of the transport mechanisms in mixed conduction of reactively sputtered ZnO thin films. Journal Physics D: Applied Physics, 2008, 41, 135309.	2.8	2
56	Lutentium incorporation influence on ZnO thin films coated via a sol–gel route: spin coating technique. Journal of Materials Science: Materials in Electronics, 2016, 27, 5089-5098.	2.2	2
57	Mobile system: detecting buried objects by magnetic anomaly method. Journal of Applied Remote Sensing, 2021, 15, .	1.3	2
58	Classification of explosives materials detected by magnetic anomaly method., 2017,,.		1
59	Current conduction mechanisms of heteroepitaxial and homoepitaxial GaN films grown by MBE. , 0, , .		O
60	Deep levels in KOH etched and MOCVD regrown GaN p-n junctions. Physica Status Solidi C: Current Topics in Solid State Physics, 2005, 2, 2454-2457.	0.8	0
61	Photoionization study of deep centers in GaNâ^•AlGaN multiple quantum wells. Journal of Vacuum Science and Technology B:Nanotechnology and Microelectronics, 2010, 28, C3I10-C3I12.	1.2	0
62	Designing a portable data acquisition system for human-computer interface applications. , 2015, , .		0
63	Digital signal processing and classification study for electrooculogram signals. , 2015, , .		0
64	Design of a data acquisition system for passive detection of buried explosives. , 2017, , .		0