Jiazhang Lian

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2291365/publications.pdf

Version: 2024-02-01

218592 197736 2,630 66 26 49 h-index citations g-index papers 69 69 69 2469 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Efficient production of lycopene from CO2 via microbial electrosynthesis. Chemical Engineering Journal, 2022, 430, 132943.	6.6	31
2	Enhancing Homologous Recombination Efficiency in <i>Pichia pastoris</i> for Multiplex Genome Integration Using Short Homology Arms. ACS Synthetic Biology, 2022, 11, 547-553.	1.9	13
3	Real-time monitoring of Ralstonia solanacearum infection progress in tomato and Arabidopsis using bioluminescence imaging technology. Plant Methods, 2022, $18,7.$	1.9	13
4	Synthetic Biology Toolkit for Marker-Less Integration of Multigene Pathways into <i>Pichia pastoris</i> via CRISPR/Cas9. ACS Synthetic Biology, 2022, 11, 623-633.	1.9	30
5	Construction of ajmalicine and sanguinarine de novo biosynthetic pathways using stable integration sites in yeast. Biotechnology and Bioengineering, 2022, 119, 1314-1326.	1.7	24
6	Metabolic Engineering of <i>Saccharomyces cerevisiae</i> for High-Level Production of Chlorogenic Acid from Glucose. ACS Synthetic Biology, 2022, 11, 800-811.	1.9	12
7	SgRNA engineering for improved genome editing and expanded functional assays. Current Opinion in Biotechnology, 2022, 75, 102697.	3.3	12
8	Microbial degradation and valorization of poly(ethylene terephthalate) (PET) monomers. World Journal of Microbiology and Biotechnology, 2022, 38, 89.	1.7	15
9	Establishing <i>Komagataella phaffii</i> as a Cell Factory for Efficient Production of Sesquiterpenoid α-Santalene. Journal of Agricultural and Food Chemistry, 2022, 70, 8024-8031.	2.4	16
10	Functional expression of eukaryotic cytochrome P450s in yeast. Biotechnology and Bioengineering, 2021, 118, 1050-1065.	1.7	27
11	Development of synthetic biology tools to engineer Pichia pastoris as a chassis for the production of natural products. Synthetic and Systems Biotechnology, 2021, 6, 110-119.	1.8	46
12	Cloning and characterization of a panel of mitochondrial targeting sequences for compartmentalization engineering in <i>Saccharomyces cerevisiae</i> . Biotechnology and Bioengineering, 2021, 118, 4269-4277.	1.7	10
13	Identification of novel metabolic engineering targets for S-adenosyl-L-methionine production in Saccharomyces cerevisiae via genome-scale engineering. Metabolic Engineering, 2021, 66, 319-327.	3.6	17
14	Efficient production of vindoline from tabersonine by metabolically engineered Saccharomyces cerevisiae. Communications Biology, 2021, 4, 1089.	2.0	24
15	Random Base Editing for Genome Evolution in <i>Saccharomyces cerevisiae</i> . ACS Synthetic Biology, 2021, 10, 2440-2446.	1.9	12
16	Recent advances in the discovery, characterization, and engineering of poly(ethylene terephthalate) (PET) hydrolases. Enzyme and Microbial Technology, 2021, 150, 109868.	1.6	39
17	Synthetic biology toolkit for engineering Cupriviadus necator H16 as a platform for CO2 valorization. Biotechnology for Biofuels, 2021, 14, 212.	6.2	14
18	Improved Functional Expression of Cytochrome P450s in Saccharomyces cerevisiae Through Screening a cDNA Library From Arabidopsis thaliana. Frontiers in Bioengineering and Biotechnology, 2021, 9, 764851.	2.0	4

#	Article	IF	Citations
19	Multi-level metabolic engineering of Pseudomonas mutabilis ATCC31014 for efficient production of biotin. Metabolic Engineering, 2020, 61, 406-415.	3.6	14
20	The Biosynthetic Gene Cluster of Pyrazomycin—A Câ€Nucleoside Antibiotic with a Rare Pyrazole Moiety. ChemBioChem, 2020, 21, 644-649.	1.3	38
21	A Single Cas9-VPR Nuclease for Simultaneous Gene Activation, Repression, and Editing in <i>Saccharomyces cerevisiae</i> . ACS Synthetic Biology, 2020, 9, 2252-2257.	1.9	24
22	Editorial: Development and Application of Novel Genome Engineering Tools in Microbial Biotechnology. Frontiers in Bioengineering and Biotechnology, 2020, 8, 621851.	2.0	0
23	Construction of a Stable and Temperature-Responsive Yeast Cell Factory for Crocetin Biosynthesis Using CRISPR-Cas9. Frontiers in Bioengineering and Biotechnology, 2020, 8, 653.	2.0	17
24	Enzymatic preparation of pyruvate by a whole-cell biocatalyst coexpressing l-lactate oxidase and catalase. Process Biochemistry, 2020, 96, 113-121.	1.8	12
25	Metabolic engineering of Parageobacillus thermoglucosidasius for the efficient production of (2R,) Tj ETQq $1\ 1\ 0$.784314 r 1.7	gBT /Overloc
26	Biocascade Synthesis of Lâ€Tyrosine Derivatives by Coupling a Thermophilic Tyrosine Phenol‣yase and Lâ€Lactate Oxidase. European Journal of Organic Chemistry, 2020, 2020, 1050-1054.	1.2	10
27	Highly efficient soluble expression and purification of recombinant human basic fibroblast growth factor (hbFGF) by fusion with a new collagen-like protein (Scl2) in <i>Escherichia coli</i> . Preparative Biochemistry and Biotechnology, 2020, 50, 598-606.	1.0	4
28	PCR & Pre-installed Expression Chassis for Facile Integration of Multi-Gene Biosynthetic Pathways. Frontiers in Bioengineering and Biotechnology, 2020, 8, 613771.	2.0	14
29	Efficient production of glutathione with multi-pathway engineering in Corynebacterium glutamicum. Journal of Industrial Microbiology and Biotechnology, 2019, 46, 1685-1695.	1.4	7
30	Efficient production of <i>S</i> â€adenosylâ€ <scp>l</scp> â€methionine from <scp>dl</scp> â€methionine in metabolic engineered <i>Saccharomyces cerevisiae</i> . Biotechnology and Bioengineering, 2019, 116, 3312-3323.	1.7	12
31	Towards a fully automated algorithm driven platform for biosystems design. Nature Communications, 2019, 10, 5150.	5.8	95
32	Combined genome editing and transcriptional repression for metabolic pathway engineering in Corynebacterium glutamicum using a catalytically active Cas12a. Applied Microbiology and Biotechnology, 2019, 103, 8911-8922.	1.7	24
33	Construction of a series of episomal plasmids and their application in the development of an efficient CRISPR/Cas9 system in Pichia pastoris. World Journal of Microbiology and Biotechnology, 2019, 35, 79.	1.7	33
34	Highly Efficient Single-Pot Scarless Golden Gate Assembly. ACS Synthetic Biology, 2019, 8, 1047-1054.	1.9	29
35	Boron nitride nanosheet embedded bio-inspired wet adhesives with switchable adhesion and oxidation resistance. Journal of Materials Chemistry A, 2019, 7, 12266-12275.	5.2	32
36	Efficient production of Pseudoionone with multipathway engineering in <i>Escherichia coli</i> Journal of Applied Microbiology, 2019, 126, 1751-1760.	1.4	9

#	Article	IF	CITATIONS
37	Multi-functional genome-wide CRISPR system for high throughput genotype–phenotype mapping. Nature Communications, 2019, 10, 5794.	5.8	104
38	Engineered CRISPR/Cas9 system for multiplex genome engineering of polyploid industrial yeast strains. Biotechnology and Bioengineering, 2018, 115, 1630-1635.	1.7	52
39	RNAi assisted genome evolution unveils yeast mutants with improved xylose utilization. Biotechnology and Bioengineering, 2018, 115, 1552-1560.	1.7	17
40	Cell-free protein synthesis enabled rapid prototyping for metabolic engineering and synthetic biology. Synthetic and Systems Biotechnology, 2018, 3, 90-96.	1.8	46
41	Recent advances in metabolic engineering of Saccharomyces cerevisiae: New tools and their applications. Metabolic Engineering, 2018, 50, 85-108.	3.6	228
42	Advancing Metabolic Engineering of <i>Saccharomyces cerevisiae</i> Using the CRISPR/Cas System. Biotechnology Journal, 2018, 13, e1700601.	1.8	41
43	Cell-Free Expression of Unnatural Amino Acid Incorporated Aquaporin SS9 with Improved Separation Performance in Biomimetic Membranes. BioMed Research International, 2018, 2018, 1-7.	0.9	1
44	Metabolic Engineering of Saccharomyces cerevisiae Using a Trifunctional CRISPR/Cas System for Simultaneous Gene Activation, Interference, and Deletion. Methods in Enzymology, 2018, 608, 265-276.	0.4	6
45	Metabolic pathway engineering for high-level production of 5-hydroxytryptophan in Escherichia coli. Metabolic Engineering, 2018, 48, 279-287.	3.6	36
46	Strain Development by Whole-Cell Directed Evolution. , 2017, , 173-200.		2
46		5.8	2 244
	Strain Development by Whole-Cell Directed Evolution., 2017,, 173-200. Combinatorial metabolic engineering using an orthogonal tri-functional CRISPR system. Nature	5.8 1.7	
47	Strain Development by Whole-Cell Directed Evolution., 2017,, 173-200. Combinatorial metabolic engineering using an orthogonal tri-functional CRISPR system. Nature Communications, 2017, 8, 1688. Construction of plasmids with tunable copy numbers in <i>Saccharomyces cerevisiae</i> and their applications in pathway optimization and multiplex genome integration. Biotechnology and		244
47	Strain Development by Whole-Cell Directed Evolution., 2017,, 173-200. Combinatorial metabolic engineering using an orthogonal tri-functional CRISPR system. Nature Communications, 2017, 8, 1688. Construction of plasmids with tunable copy numbers in <i>Saccharomyces cerevisiae</i> applications in pathway optimization and multiplex genome integration. Biotechnology and Bioengineering, 2016, 113, 2462-2473. Functional Reconstitution of a Pyruvate Dehydrogenase in the Cytosol of <i>Saccharomyces</i>	1.7	61
48	Strain Development by Whole-Cell Directed Evolution. , 2017, , 173-200. Combinatorial metabolic engineering using an orthogonal tri-functional CRISPR system. Nature Communications, 2017, 8, 1688. Construction of plasmids with tunable copy numbers in <i>Saccharomyces cerevisiae</i> applications in pathway optimization and multiplex genome integration. Biotechnology and Bioengineering, 2016, 113, 2462-2473. Functional Reconstitution of a Pyruvate Dehydrogenase in the Cytosol of <i>Saccharomyces cerevisiae</i> i> through Lipoylation Machinery Engineering. ACS Synthetic Biology, 2016, 5, 689-697. Production of long chain alcohols and alkanes upon coexpression of an acyl-ACP reductase and aldehyde-deformylating oxygenase with a bacterial type-I fatty acid synthase in E. coli. Molecular	1.7	2446119
47 48 49 50	Strain Development by Whole-Cell Directed Evolution. , 2017, , 173-200. Combinatorial metabolic engineering using an orthogonal tri-functional CRISPR system. Nature Communications, 2017, 8, 1688. Construction of plasmids with tunable copy numbers in <i>Saccharomyces cerevisiae</i> and their applications in pathway optimization and multiplex genome integration. Biotechnology and Bioengineering, 2016, 113, 2462-2473. Functional Reconstitution of a Pyruvate Dehydrogenase in the Cytosol of <i>Saccharomyces cerevisiae</i> through Lipoylation Machinery Engineering. ACS Synthetic Biology, 2016, 5, 689-697. Production of long chain alcohols and alkanes upon coexpression of an acyl-ACP reductase and aldehyde-deformylating oxygenase with a bacterial type-I fatty acid synthase in E. coli. Molecular BioSystems, 2015, 11, 2464-2472. Recent advances in biosynthesis of fatty acids derived products in <i>Saccharomyces cerevisiae</i> li> via enhanced supply of precursor metabolites. Journal of Industrial Microbiology and Biotechnology,	1.7 1.9 2.9	244 61 19 29
47 48 49 50	Strain Development by Whole-Cell Directed Evolution. , 2017, , 173-200. Combinatorial metabolic engineering using an orthogonal tri-functional CRISPR system. Nature Communications, 2017, 8, 1688. Construction of plasmids with tunable copy numbers in <i>Saccharomyces cerevisiae</i> applications in pathway optimization and multiplex genome integration. Biotechnology and Bioengineering, 2016, 113, 2462-2473. Functional Reconstitution of a Pyruvate Dehydrogenase in the Cytosol of <i>Saccharomyces cerevisiae</i> i> through Lipoylation Machinery Engineering. ACS Synthetic Biology, 2016, 5, 689-697. Production of long chain alcohols and alkanes upon coexpression of an acyl-ACP reductase and aldehyde-deformylating oxygenase with a bacterial type-I fatty acid synthase in E. coli. Molecular BioSystems, 2015, 11, 2464-2472. Recent advances in biosynthesis of fatty acids derived products in <i>Saccharomyces cerevisiae</i> i> via enhanced supply of precursor metabolites. Journal of Industrial Microbiology and Biotechnology, 2015, 42, 437-451. Metabolic engineering of Saccharomyces cerevisiae to improve 1-hexadecanol production. Metabolic	1.7 1.9 2.9	244 61 19 29

#	Article	IF	CITATIONS
55	Metabolic engineering of a Saccharomyces cerevisiae strain capable of simultaneously utilizing glucose and galactose to produce enantiopure (2R,3R)-butanediol. Metabolic Engineering, 2014, 23, 92-99.	3.6	91
56	Enhanced functional expression of aquaporin Z via fusion of in situ cleavable leader peptides in Escherichia coli cell-free system. Enzyme and Microbial Technology, 2014, 55, 26-30.	1.6	16
57	Design and construction of acetyl-CoA overproducing Saccharomyces cerevisiae strains. Metabolic Engineering, 2014, 24, 139-149.	3.6	199
58	Protein design for pathway engineering. Journal of Structural Biology, 2014, 185, 234-242.	1.3	60
59	Customized optimization of metabolic pathways by combinatorial transcriptional engineering. Nucleic Acids Research, 2012, 40, e142-e142.	6.5	207
60	High-level soluble expression of hIGF-1 fusion protein in recombinant Escherichia coli. Process Biochemistry, 2010, 45, 1401-1405.	1.8	12
61	Reconstruction of the UDP-N-acetylglucosamine biosynthetic pathway in cell-free system. Biotechnology Letters, 2010, 32, 1481-1486.	1.1	10
62	Preparative Scale Production of Functional Mouse Aquaporin 4 Using Different Cell-Free Expression Modes. PLoS ONE, 2010, 5, e12972.	1.1	41
63	Efficient Expression of Aquaporin Z in Escherichia coli Cell-Free System Using Different Fusion Vectors. Protein and Peptide Letters, 2010, 17, 181-185.	0.4	21
64	Improving aquaporin Z expression in Escherichia coli by fusion partners and subsequent condition optimization. Applied Microbiology and Biotechnology, 2009, 82, 463-470.	1.7	40
65	High-level expression of soluble subunit b of F1F0 ATP synthase in Escherichia coli cell-free system. Applied Microbiology and Biotechnology, 2009, 85, 303-311.	1.7	14
66	Efficient Expression of Membrane-Bound Water Channel Protein (Aquaporin Z) in Escherichia coli. Protein and Peptide Letters, 2008, 15, 687-691.	0.4	16