Hai-Chang Li

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2291208/publications.pdf

Version: 2024-02-01

50	1,885	279487 23 h-index	42
papers	citations		g-index
50	50	50	4494
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	The cell membrane repair protein MG53 modulates transcription factor NF-κB signaling to control kidney fibrosis. Kidney International, 2022, 101, 119-130.		14
2	MG53 attenuates nitrogen mustardâ€induced acute lung injury. Journal of Cellular and Molecular Medicine, 2022, 26, 1886-1895.	1.6	5
3	Sustained delivery of rhMG53 promotes diabetic wound healing and hair follicle development. Bioactive Materials, 2022, 18, 104-115.	8.6	9
4	Recombinant MG53 Protein Protects Mice from Lethal Influenza Virus Infection. American Journal of Respiratory and Critical Care Medicine, 2021, 203, 254-257.	2.5	15
5	MG53 as a Novel Therapeutic Protein to Treat Acute Lung Injury. Military Medicine, 2021, 186, 339-345.	0.4	9
6	MG53 suppresses tumor progression and stress granule formation by modulating G3BP2 activity in non-small cell lung cancer. Molecular Cancer, 2021, 20, 118.	7.9	24
7	Editorial: New Technologies in Cancer Diagnostics and Therapeutics. Frontiers in Pharmacology, 2021, 12, 760833.	1.6	2
8	MG53 suppresses interferon- \hat{l}^2 and inflammation via regulation of ryanodine receptor-mediated intracellular calcium signaling. Nature Communications, 2020, 11, 3624.	5.8	32
9	MG53 Does Not Manifest the Development of Diabetes in <i>db/db</i> Mice. Diabetes, 2020, 69, 1052-1064.	0.3	36
10	MG53 protects against contrast-induced acute kidney injury by reducing cell membrane damage and apoptosis. Acta Pharmacologica Sinica, 2020, 41, 1457-1464.	2.8	13
11	Spatiotemporal delivery of basic fibroblast growth factor to directly and simultaneously attenuate cardiac fibrosis and promote cardiac tissue vascularization following myocardial infarction. Journal of Controlled Release, 2019, 311-312, 233-244.	4.8	37
12	Sustained elevation of MG53 in the bloodstream increases tissue regenerative capacity without compromising metabolic function. Nature Communications, 2019, 10, 4659.	5.8	47
13	Lysine-induced swine satellite cell migration is mediated by the FAK pathway. Food and Function, 2019, 10, 583-591.	2.1	8
14	mTORC1 Mediates Lysine-Induced Satellite Cell Activation to Promote Skeletal Muscle Growth. Cells, 2019, 8, 1549.	1.8	34
15	Thermosensitive, fast gelling, photoluminescent, highly flexible, and degradable hydrogels for stem cell delivery. Acta Biomaterialia, 2019, 83, 96-108.	4.1	38
16	Topical Application of Recombinant Human MG53 Protein Facilitates Healing of Chronic Wounds in Diabetic Mice. FASEB Journal, 2019, 33, .	0.2	0
17	PCL2, a novel tumor suppressor in breast cancer. Science Bulletin, 2018, 63, 597-598.	4.3	О
18	Dietary Supplementation with Pioglitazone Hydrochloride and Chromium Methionine Improves Growth Performance, Meat Quality, and Antioxidant Ability in Finishing Pigs. Journal of Agricultural and Food Chemistry, 2018, 66, 4345-4351.	2.4	23

#	Article	IF	CITATIONS
19	An Injectable Oxygen Release System to Augment Cell Survival and Promote Cardiac Repair Following Myocardial Infarction. Scientific Reports, 2018, 8, 1371.	1.6	92
20	Zinc in Wound Healing Modulation. Nutrients, 2018, 10, 16.	1.7	278
21	Effects of pioglitazone hydrochloride and vitamin E on meat quality, antioxidant status and fatty acid profiles in finishing pigs. Meat Science, 2018, 145, 340-346.	2.7	23
22	MG53 Negatively Regulates NLRP3 to Inhibit Inflammation Associated with Tissue Injury. Biophysical Journal, 2017, 112, 532a.	0.2	0
23	Sustained Release of a Peptide-Based Matrix Metalloproteinase-2 Inhibitor to Attenuate Adverse Cardiac Remodeling and Improve Cardiac Function Following Myocardial Infarction. Biomacromolecules, 2017, 18, 2820-2829.	2.6	79
24	A Bioinspired Alginate-Gum Arabic Hydrogel with Micro-/Nanoscale Structures for Controlled Drug Release in Chronic Wound Healing. ACS Applied Materials & Samp; Interfaces, 2017, 9, 22160-22175.	4.0	127
25	Differentiation capacities of skeletal muscle satellite cells in Lantang and Landrace piglets. Oncotarget, 2017, 8, 43192-43200.	0.8	9
26	MG53 permeates through blood-brain barrier to protect ischemic brain injury. Oncotarget, 2016, 7, 22474-22485.	0.8	54
27	MG53 Promotes Wound Healing and Reduces Scar Formation by Facilitating Cell Membrane Repair and Controlling Myofibroblast Differentiation. Biophysical Journal, 2016, 110, 589a.	0.2	0
28	L-Glutamate deficiency can trigger proliferation inhibition via down regulation of the mTOR/S6K1 pathway in pig intestinal epithelial cells1. Journal of Animal Science, 2016, 94, 1541-1549.	0.2	26
29	Satellite cells isolated from skeletal muscle will proliferate faster in WENS yellow feather chicks. Animal Science Journal, 2016, 87, 126-133.	0.6	3
30	Focal adhesion kinase and paxillin promote migration and adhesion to fibronectin by swine skeletal muscle satellite cells. Oncotarget, 2016, 7, 30845-30854.	0.8	24
31	Lysosomal Two-pore Channel Subtype 2 (TPC2) Regulates Skeletal Muscle Autophagic Signaling. Journal of Biological Chemistry, 2015, 290, 3377-3389.	1.6	69
32	MG53-mediated cell membrane repair protects against acute kidney injury. Science Translational Medicine, 2015, 7, 279ra36.	5.8	103
33	Low Dose of IGFâ€I Increases Cell Size of Skeletal Muscle Satellite Cells Via Akt/S6K Signaling Pathway. Journal of Cellular Biochemistry, 2015, 116, 2637-2648.	1.2	18
34	Modulation of Wound Healing and Scar Formation by MG53 Protein-mediated Cell Membrane Repair. Journal of Biological Chemistry, 2015, 290, 24592-24603.	1.6	64
35	Heat stress inhibits proliferation, promotes growth, and induces apoptosis in cultured Lantang swine skeletal muscle satellite cells. Journal of Zhejiang University: Science B, 2015, 16, 549-559.	1.3	42
36	Treatment of acute lung injury by targeting MG53-mediated cell membrane repair. Nature Communications, 2014, 5, 4387.	5.8	100

3

#	Article	IF	CITATIONS
37	Amphipathic Tail-Anchoring Peptide is a Promising Therapeutic Agent for Cancer Treatment. Biophysical Journal, 2014, 106, 186a.	0.2	0
38	Immobilization of insulin-like growth factor-1 onto thermosensitive hydrogels to enhance cardiac progenitor cell survival and differentiation under ischemic conditions. Science China Chemistry, 2014, 57, 568-578.	4.2	12
39	The Therapeutic Role of Recombinant Human MG53 Protein in Wound Healing. Biophysical Journal, 2014, 106, 95a.	0.2	1
40	Superresolution Microscopy Reveals Nanometer-Scale Reorganization of MG53 Associated with Membrane Repair. Biophysical Journal, 2014, 106, 633a.	0.2	0
41	Amphipathic tail-anchoring peptide is a promising therapeutic agent for prostate cancer treatment. Oncotarget, 2014, 5, 7734-7747.	0.8	29
42	MG53 can Function in Keratinocyte Membrane Repair and Contribute to Excisional Wound Healing in Rodent Skin. Biophysical Journal, 2013, 104, 293a.	0.2	0
43	Experimental evidence for UNC-6 (netrin) axon guidance by stochastic fluctuations of intracellular UNC-40 (DCC) outgrowth activity. Biology Open, 2013, 2, 1300-1312.	0.6	30
44	The Roles of Multiple UNC-40 (DCC) Receptor-Mediated Signals in Determining Neuronal Asymmetry Induced by the UNC-6 (Netrin) Ligand. Genetics, 2009, 183, 941-949.	1.2	21
45	CLEC-38, A Transmembrane Protein with C-Type Lectin-Like Domains, Negatively Regulates UNC-40-Mediated Axon Outgrowth and Promotes Presynaptic Development in Caenorhabditis elegans. Journal of Neuroscience, 2008, 28, 4541-4550.	1.7	27
46	RPM-1, a < i > Caenorhabditis elegans < /i> Protein That Functions in Presynaptic Differentiation, Negatively Regulates Axon Outgrowth by Controlling SAX-3/robo and UNC-5/UNC5 Activity. Journal of Neuroscience, 2008, 28, 3595-3603.	1.7	46
47	Histone deacetylase 1 regulates retinal neurogenesis in zebrafish by suppressing Wnt and Notch signaling pathways. Development (Cambridge), 2005, 132, 3027-3043.	1.2	210
48	Restriction of proliferation of primordial germ cells by the irradiation of Japanese quail embryos with soft X-rays. Comparative Biochemistry and Physiology Part A, Molecular & Integrative Physiology, 2001, 130, 133-140.	0.8	31
49	Identification of Transferred Chicken Germ Cells in Quail Gonad and Semen by Amplification of Chicken-Specific PCR Products Journal of Poultry Science, 2001, 38, 308-316.	0.7	15
50	Population of Circulating Primordial Germ Cells in Early Japanese Quail Embryos. Journal of Poultry Science, 2001, 38, 175-180.	0.7	6