
Jean-Michel Bouler

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2291169/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Macroporous biphasic calcium phosphate ceramics: influence of macropore diameter and macroporosity percentage on bone ingrowth. Biomaterials, 1998, 19, 133-139.	5.7	587
2	Calcium phosphate cements for bone substitution: Chemistry, handling and mechanical properties. Acta Biomaterialia, 2014, 10, 1035-1049.	4.1	535
3	Calcium phosphate drug delivery system: influence of local zoledronate release on bone implant osteointegration. Bone, 2005, 36, 52-60.	1.4	250
4	Calcium phosphate biomaterials as bone drug delivery systems: a review. Drug Discovery Today, 2010, 15, 547-552.	3.2	184
5	In vivo bone regeneration with injectable calcium phosphate biomaterial: A three-dimensional micro-computed tomographic, biomechanical and SEM study. Biomaterials, 2005, 26, 5444-5453.	5.7	175
6	Adaptive Crystal Formation in Normal and Pathological Calcifications in Synthetic Calcium Phosphate and Related Biomaterials. International Review of Cytology, 1997, 172, 129-191.	6.2	166
7	Macroporous biphasic calcium phosphate ceramics: Influence of five synthesis parameters on compressive strength. Journal of Biomedical Materials Research Part B, 1996, 32, 603-609.	3.0	165
8	Local delivery of bisphosphonate from coated orthopedic implants increases implants mechanical stability in osteoporotic rats. Journal of Biomedical Materials Research - Part A, 2006, 76A, 133-143.	2.1	153
9	Novel biomaterials for bisphosphonate delivery. Biomaterials, 2005, 26, 2073-2080.	5.7	143
10	Kinetic study of bone ingrowth and ceramic resorption associated with the implantation of different injectable calcium-phosphate bone substitutes. , 1999, 47, 28-35.		138
11	Biphasic calcium phosphates: Influence of three synthesis parameters on the HA/?-TCP ratio. Journal of Biomedical Materials Research Part B, 2000, 51, 680-684.	3.0	133
12	Biphasic calcium phosphate/hydrosoluble polymer composites: a new concept for bone and dental substitution biomaterials. Bone, 1999, 25, 59S-61S.	1.4	120
13	Effects of pH and Ca/P molar ratio on the quantity and crystalline structure of calcium phosphates obtained from aqueous solutions. Dairy Science and Technology, 2009, 89, 301-316.	2.2	111
14	Human Primary Osteocyte Differentiation in a 3D Culture System. Journal of Bone and Mineral Research, 2009, 24, 1927-1935.	3.1	103
15	Osteoclastic resorption of biphasic calcium phosphate ceramicin vitro. , 1997, 37, 346-352.		88
16	Implants delivering bisphosphonate locally increase periprosthetic bone density in an osteoporotic sheep model. A pilot study. , 2008, 16, 10-16.		88
17	Elaboration conditions influence physicochemical properties and in vivo bioactivity of macroporous biphasic calcium phosphate ceramics. Journal of Materials Science: Materials in Medicine, 1999, 10, 199-204.	1.7	86
18	A New Injectable Calcium Phosphate Biomaterial for Immediate Bone Filling of Extraction Sockets: A Preliminary Study in Dogs. Journal of Periodontology, 1999, 70, 375-383.	1.7	85

#	Article	IF	CITATIONS
19	Modelling the mechanical properties of microporous and macroporous biphasic calcium phosphate bioceramics. Journal of the European Ceramic Society, 2006, 26, 3647-3656.	2.8	83
20	Macroporous biphasic calcium phosphate ceramics versus injectable bone substitute: a comparative study 3 and 8 weeks after implantation in rabbit bone. Journal of Materials Science: Materials in Medicine, 2001, 12, 385-390.	1.7	82
21	In vivo bone augmentation in an osteoporotic environment using bisphosphonate-loaded calcium deficient apatite. Biomaterials, 2010, 31, 7776-7784.	5.7	80
22	A simple and effective approach to prepare injectable macroporous calcium phosphate cement for bone repair: Syringe-foaming using a viscous hydrophilic polymeric solution. Acta Biomaterialia, 2016, 31, 326-338.	4.1	76
23	Injectable bone substitute using a hydrophilic polymer. Bone, 1999, 25, 67S-70S.	1.4	74
24	Short-term effects of mineral particle sizes on cellular degradation activity after implantation of injectable calcium phosphate biomaterials and the consequences for bone substitution. Bone, 1999, 25, 71S-74S.	1.4	72
25	A novel injectable, cohesive and toughened Si-HPMC (silanized-hydroxypropyl methylcellulose) composite calcium phosphate cement for bone substitution. Acta Biomaterialia, 2014, 10, 3335-3345.	4.1	71
26	Calcium-deficient apatite: A firstin vivo study concerning bone ingrowth. Journal of Biomedical Materials Research Part B, 2003, 65A, 402-408.	3.0	70
27	Gallium modulates osteoclastic bone resorption <i>in vitro</i> without affecting osteoblasts. British Journal of Pharmacology, 2010, 159, 1681-1692.	2.7	69
28	Chemically Modified Calcium Phosphates as Novel Materials for Bisphosphonate Delivery. Advanced Materials, 2004, 16, 1423-1427.	11.1	63
29	Structural and spectroscopic characterization of a series of potassium- and/or sodium-substituted β-tricalcium phosphate. Acta Biomaterialia, 2011, 7, 1844-1852.	4.1	63
30	The influence of different cellulose ethers on both the handling and mechanical properties of calcium phosphate cements for bone substitution. Acta Biomaterialia, 2013, 9, 5740-5750.	4.1	63
31	Calcium phosphate scaffold and bone marrow for bone reconstruction in irradiated area: a dog study. Bone, 2005, 36, 323-330.	1.4	60
32	Effect of Sodium Doping in β-Tricalcium Phosphate on Its Structure and Properties. Chemistry of Materials, 2006, 18, 1425-1433.	3.2	60
33	Characterization and Properties of Novel Gallium-Doped Calcium Phosphate Ceramics. Inorganic Chemistry, 2011, 50, 8252-8260.	1.9	60
34	Reaction of Zoledronate with β-Tricalcium Phosphate for the Design of Potential Drug Device Combined Systems. Chemistry of Materials, 2008, 20, 182-191.	3.2	48
35	Investigation of alendronate-doped apatitic cements as a potential technology for the prevention of osteoporotic hip fractures: Critical influence of the drug introduction mode on the in vitro cement properties. Acta Biomaterialia, 2011, 7, 759-770.	4.1	46
36	A new technological procedure using sucrose as porogen compound to manufacture porous biphasic calcium phosphate ceramics of appropriate micro- and macrostructure. Ceramics International, 2010, 36, 93-101.	2.3	44

#	Article	IF	CITATIONS
37	Design and properties of novel gallium-doped injectable apatitic cements. Acta Biomaterialia, 2015, 24, 322-332.	4.1	44
38	Gallium as a potential candidate for treatment of osteoporosis. Drug Discovery Today, 2012, 17, 1127-1132.	3.2	43
39	Therapeutic strategies for treating osteolytic bone metastases. Drug Discovery Today, 2014, 19, 1419-1426.	3.2	43
40	Vertebroplasty using bisphosphonate-loaded calcium phosphate cement in a standardized vertebral body bone defect in an osteoporotic sheep model. Acta Biomaterialia, 2014, 10, 4887-4895.	4.1	43
41	Biomaterial porosity determined by fractal dimensions, succolarity and lacunarity on microcomputed tomographic images. Materials Science and Engineering C, 2013, 33, 2025-2030.	3.8	42
42	Hybrid materials applied to biotechnologies: coating of calcium phosphates for the design of implants active against bone resorption disorders. Journal of Materials Chemistry, 2005, 15, 3869.	6.7	41
43	Biphasic Calcium Phosphate Microparticles for Bone Formation: Benefits of Combination with Blood Clot. Tissue Engineering - Part A, 2010, 16, 3495-3505.	1.6	39
44	Injectable calcium phosphate scaffold and bone marrow graft for bone reconstruction in irradiated areas: An experimental study in rats. Biomaterials, 2006, 27, 4566-4572.	5.7	35
45	Injectable bone substitute to preserve alveolar ridge resorption after tooth extraction: A study in dog. Journal of Materials Science: Materials in Medicine, 2006, 17, 1145-1152.	1.7	32
46	Calcium-deficient apatite: influence of granule size and consolidation mode on release and in vitro activity of vancomycin. Biomaterials, 2003, 24, 1265-1270.	5.7	31
47	Fate of Bone Marrow Stromal Cells in a Syngenic Model of Bone Formation. Tissue Engineering - Part A, 2011, 17, 2267-2278.	1.6	29
48	Vancomycin biodegradable poly(lactide-co-glycolide) microparticles for bone implantation. Influence of the formulation parameters on the size, morphology, drug loading andin vitrorelease. Journal of Microencapsulation, 2005, 22, 841-852.	1.2	27
49	Calcium-deficient apatite synthesized by ammonia hydrolysis of dicalcium phosphate dihydrate: Influence of temperature, time, and pressure. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2007, 80B, 32-42.	1.6	26
50	Novel phosphate–phosphonate hybrid nanomaterials applied to biology. Progress in Solid State Chemistry, 2006, 34, 257-266.	3.9	25
51	Orthopedic Implant Used as Drug Delivery System: Clinical Situation and State of the Research. Current Drug Delivery, 2008, 5, 59-63.	0.8	24
52	Prediction of bone density around orthopedic implants delivering bisphosphonate. Journal of Biomechanics, 2009, 42, 1206-1211.	0.9	24
53	Osteoclastic differentiation of mouse and human monocytes in a plasma clot/biphasic calcium phosphate microparticles composite. , 2010, 20, 379-392.		24
54	Gallium enhances reconstructive properties of a calcium phosphate bone biomaterial. Journal of Tissue Engineering and Regenerative Medicine, 2018, 12, e854-e866.	1.3	20

#	Article	IF	CITATIONS
55	Bone texture analysis of human femurs using a new device (BMAâ,,¢) improves failure load prediction. Osteoporosis International, 2012, 23, 1311-1316.	1.3	18
56	Nuclear magnetic resonance spectroscopy of bone substitutes. Bone, 1999, 25, 103S-105S.	1.4	16
57	High-frequency impedance measurement as a relevant tool for monitoring the apatitic cement setting reaction. Acta Biomaterialia, 2014, 10, 940-950.	4.1	15
58	A straightforward approach to enhance the textural, mechanical and biological properties of injectable calcium phosphate apatitic cements (CPCs): CPC/blood composites, a comprehensive study. Acta Biomaterialia, 2017, 62, 328-339.	4.1	15
59	Surface potential and osteoblast attraction to calcium phosphate compounds is affected by selected alkaline hydrolysis processing. Journal of Materials Science: Materials in Medicine, 2004, 15, 841-846.	1.7	14
60	Na-doped β-tricalcium phosphate: physico-chemical and in vitro biological properties. Journal of Materials Science: Materials in Medicine, 2011, 22, 593-600.	1.7	14
61	Gallium, a promising candidate to disrupt the vicious cycle driving osteolytic metastases. Biochemical Pharmacology, 2016, 116, 11-21.	2.0	14
62	In Vitro Carbonated Apatite Precipitation on Biphasic Calcium Phosphate Pellets Presenting Various HA/β-TCP Ratios. Key Engineering Materials, 2000, 192-195, 119-122.	0.4	12
63	Analgesic properties of calcium phosphate apatite loaded with bupivacaine on postoperative pain. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2010, 94B, 89-96.	1.6	11
64	Calcium Phosphate Ceramics as Bone Drug-Combined Devices. Key Engineering Materials, 0, 441, 181-201.	0.4	11
65	Combination of blood and biphasic calcium phosphate microparticles for the reconstruction of large bone defects in dog: A pilot study. Journal of Biomedical Materials Research - Part A, 2018, 106, 1842-1850.	2.1	11
66	Design and properties of a novel radiopaque injectable apatitic calcium phosphate cement, suitable for imageâ€guided implantation. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2018, 106, 2786-2795.	1.6	11
67	Inactivation of <i>Staphylococcus aureus</i> in calcium phosphate biomaterials via isostatic compression. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2009, 91B, 348-353.	1.6	10
68	<i>In Vivo</i> Assessment of the Antimicrobial Activity of a Calcium-Deficient Apatite Vancomycin Drug Delivery System in a Methicillin-Resistant <i>Staphylococcus aureus</i> Rabbit Osteomyelitis Experimental Model. Antimicrobial Agents and Chemotherapy, 2010, 54, 950-952.	1.4	10
69	Solid-state 31P and 1H chemical MR micro-imaging of hard tissues and biomaterials with magic angle spinning at very high magnetic field. Scientific Reports, 2017, 7, 8224.	1.6	10
70	In vivo resorption of injectable apatitic calcium phosphate cements: Critical role of the intergranular microstructure. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2020, 108, 367-376.	1.6	10
71	Impact of Dynamic Culture in the RCCS! Bioreactor on a Three-Dimensional Model of Bone Matrix Formation. Procedia Engineering, 2011, 10, 3662-3667.	1.2	9
72	Assay of in vitro osteoclast activity on dentine, and synthetic calcium phosphate bone substitutes. Journal of Materials Science: Materials in Medicine, 2012, 23, 797-803.	1.7	9

#	Article	IF	CITATIONS
73	Effects of citrate and NaCl on size, morphology, crystallinity and microstructure of calcium phosphates obtained from aqueous solutions at acidic or near-neutral pH. Journal of Dairy Research, 2012, 79, 238-248.	0.7	8
74	Pain Management After Bone Reconstruction Surgery Using an Analgesic Bone Cement: A Functional Noninvasive In Vivo Study Using Gait Analysis. Journal of Pain, 2018, 19, 1169-1180.	0.7	8
75	Skin sensitization study of two hydroxypropyl methylcellulose components (Benecel and E4M) of an injectable bone substitute in guinea pigs. Journal of Materials Science: Materials in Medicine, 2002, 13, 149-154.	1.7	7
76	<i>In Vitro</i> Characterization of Calcium Phosphate Biomaterial Loaded with Linezolid for Osseous Bone Defect Implantation. Journal of Biomaterials Applications, 2012, 26, 811-828.	1.2	7
77	Polarized infrared reflectance spectra of brushite (CaHPO4â‹2H2O) crystal investigation of the phosphate stretching modes. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2013, 111, 7-13.	2.0	6
78	Combination of biocompatible hydrogel precursors to apatitic calcium phosphate cements (<scp>CPCs</scp>): Influence of the in situ hydrogel reticulation on the <scp>CPC</scp> properties. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2021, 109, 102-116.	1.6	6
79	Improvement of macroporous biphasic phosphocalcic ceramics for the filling of bone defects. IRBM News, 2005, 26, 247-248.	0.1	5
80	Raman and Infrared Studies of Substituted β-TCP. Key Engineering Materials, 0, 493-494, 225-230.	0.4	5
81	A delivery system of linezolid to enhance the MRSA osteomyelitis prognosis: in vivo experimental assessment. European Journal of Clinical Microbiology and Infectious Diseases, 2013, 32, 195-198.	1.3	5
82	Calcium supplementation decreases BCP-induced inflammatory processes in blood cells through the NLRP3 inflammasome down-regulation. Acta Biomaterialia, 2017, 57, 462-471.	4.1	5
83	Polarized Raman spectra of brushite (CaHPO ₄ .2H ₂ O) crystal. Investigation of the phosphate stretching modes, study of the LOTO splitting. Journal of Raman Spectroscopy, 2016, 47, 971-977.	1.2	4
84	Macroporous biphasic calcium phosphate ceramics. , 1997, , 71-74.		4
85	Improvement of Porosity of a Calcium Phosphate Cement by Incorporation of Biodegradable Polymer Microspheres. Key Engineering Materials, 2005, 284-286, 129-132.	0.4	3
86	Proteomic analysis identified LBP and CD14 as key proteins in blood/biphasic calcium phosphate microparticle interactions. Acta Biomaterialia, 2021, 127, 298-312.	4.1	3
87	An in vitro analysis model for investigating the staining effect of various chlorhexidine-based mouthwashes. Journal of Clinical and Experimental Dentistry, 2017, 9, 0-0.	0.5	3
88	In Vivo Comparison of Two Injectable Calcium Phosphate Biomaterials: Ionic Cement and Polymer-Associated Particulate Ceramic. Key Engineering Materials, 2000, 192-195, 801-804.	0.4	2
89	NMR Spectroscopy of Bone and Bone Substitutes. Key Engineering Materials, 2000, 192-195, 759-764.	0.4	2
90	Vibrational Properties of Sodium Substituted β-Tricalcium Phosphate. Key Engineering Materials, 2007, 361-363, 75-78.	0.4	2

#	Article	IF	CITATIONS
91	Rheological Properties of an Injectable Bioactive Calcium Phosphate Material. Key Engineering Materials, 2007, 330-332, 847-850.	0.4	2
92	Exploring relationships between fractal dimension and trabecular bone characteristics. Proceedings of SPIE, 2012, , .	0.8	2
93	Maxillary Sinus Bone Grafting with an Injectable Bone Substitute: a Sheep Study. Key Engineering Materials, 2004, 254-256, 193-196.	0.4	1
94	Mechanical Properties of Macroporous Biphasic Calcium Phosphate Bioceramics Fabricated Using a Porogen. Key Engineering Materials, 2005, 280-283, 1549-1554.	0.4	1
95	Mechanical Properties of Calcium Phosphate Cements (CPC) for Bone Substitution: Influence of Fabrication and Microstructure. Key Engineering Materials, 0, 493-494, 409-414.	0.4	1
96	Gallium-Doped β-Tricalcium Phosphate Ceramics: Characterization and Properties. Key Engineering Materials, 2011, 493-494, 195-198.	0.4	1
97	New approaches for the local prevention of osteoporotic fractures. Materials Research Society Symposia Proceedings, 2012, 1376, 26.	0.1	1
98	Delivery systems of local anesthetics in bone surgery: are they efficient and safe?. Drug Discovery Today, 2018, 23, 1897-1903.	3.2	1
99	Young's Modulus of Macroporous Bioceramics: Measurement and Numerical Simulation. Bioceramics Development and Applications, 2010, 1, 1-3.	0.3	1
100	Calcium Deficient Apatite: An In-Vitro Model for Vancomycin Controlled Release. Key Engineering Materials, 2002, 218-220, 179-182.	0.4	0
101	Assessment of Cancellous Bone Architecture after Implantation of an Injectable Bone Substitute. Key Engineering Materials, 2004, 254-256, 55-58.	0.4	0
102	Bone Marrow Autograft Associated to Macroporous Biphasic Calcium Phosphate for Bone Substitution in an Animal Model of Sequels of Radiotherapy. Key Engineering Materials, 2005, 284-286, 285-288.	0.4	0
103	Modeling Relations between Processing, Microstructure and Mechanical Properties of Porous Bioceramics. Advanced Materials Research, 2006, 15-17, 519-524.	0.3	0
104	Validation of an Analytical Model Describing Mechanical Properties of Porous BCP Ceramics. Key Engineering Materials, 2007, 361-363, 15-18.	0.4	0
105	Influence of Association Type of Bisphosphonates with Calcium-Deficient Apatite on Drug Release. Key Engineering Materials, 2007, 361-363, 51-54.	0.4	0
106	Calcium Phosphates / Biphosphonates Combinations…Towards a Therapeutic Synergy. Key Engineering Materials, 0, 377, 99-110.	0.4	0
107	NMR Spectroscopy Contribution to the Study of Biomaterial Mineralisation. , 2002, , 209-218.		0