Appanah R Appadu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2290898/publications.pdf

Version: 2024-02-01

759233 940533 53 376 12 16 citations h-index g-index papers 55 55 55 155 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	1D Generalised Burgers-Huxley: Proposed Solutions Revisited and Numerical Solution Using FTCS and NSFD Methods. Frontiers in Applied Mathematics and Statistics, 2022, 7, .	1.3	6
2	On the numerical solution of 2D Burgers-Huxley equation using NSFD and classical methods. AIP Conference Proceedings, 2022, , .	0.4	O
3	Solution of 3D linearized KdV equation using reduced differential transform method. AIP Conference Proceedings, 2022, , .	0.4	1
4	Unconditionally positive NSFD and classical finite difference schemes for biofilm formation on medical implant using Allen-Cahn equation. Demonstratio Mathematica, 2022, 55, 40-60.	1.5	4
5	A NSFD Discretization of Two-Dimensional Singularly Perturbed Semilinear Convection-Diffusion Problems. Frontiers in Applied Mathematics and Statistics, 2022, 8, .	1.3	2
6	Comparison of some forecasting methods for COVID-19. AEJ - Alexandria Engineering Journal, 2021, 60, 1565-1589.	6.4	17
7	Computational Study of Some Numerical Methods for the Generalized Burgers-Huxley Equation. Communications in Computer and Information Science, 2021, , 56-67.	0.5	1
8	On Certain Properties and Applications of the Perturbed Meixner–Pollaczek Weight. Mathematics, 2021, 9, 955.	2.2	1
9	Classical and Multisymplectic Schemes for Linearized KdV Equation: Numerical Results and Dispersion Analysis. Fluids, 2021, 6, 214.	1.7	6
10	Some Finite Difference Methods to Model Biofilm Growth and Decay: Classical and Non-Standard. Computation, 2021, 9, 123.	2.0	5
11	On the performance of some NSFD methods for a 2-D generalized Burgers–Huxley equation. Journal of Difference Equations and Applications, 2021, 27, 1537-1573.	1.1	4
12	Comparison of modified ADM and classical finite difference method for some third-order and fifth-order KdV equations. Demonstratio Mathematica, 2021, 54, 377-409.	1.5	7
13	On Semi-Classical Orthogonal Polynomials Associated with a Modified Sextic Freud-Type Weight. Mathematics, 2020, 8, 1250.	2.2	4
14	On Semi-Analytical Solutions for Linearized Dispersive KdV Equations. Mathematics, 2020, 8, 1769.	2.2	14
15	Construction and analysis of some nonstandard finite difference methods for the <scp>FitzHugh–Nagumo</scp> equation. Numerical Methods for Partial Differential Equations, 2020, 36, 1145-1169.	3.6	18
16	Comparative Study of Some Numerical Methods for the Standard FitzHugh-Nagumo Equation. Forum for Interdisciplinary Mathematics, 2020, , 95-127.	1.6	2
17	Comparison of some numerical methods for the Burgers-Huxley equation. AIP Conference Proceedings, 2020, , .	0.4	2
18	Optimized composite finite difference schemes for atmospheric flow modeling. Numerical Methods for Partial Differential Equations, 2019, 35, 2171-2192.	3.6	4

#	Article	IF	CITATIONS
19	Comparative Study of Some Numerical Methods for the Burgers–Huxley Equation. Symmetry, 2019, 11, 1333.	2.2	23
20	On the numerical solution of Fisher's equation with coefficient of diffusion term much smaller than coefficient of reaction term. Advances in Difference Equations, 2019, 2019, .	3.5	18
21	Comparative study of some numerical methods for FitzHugh-Nagumo equation. AIP Conference Proceedings, 2019, , .	0.4	5
22	An explicit nonstandard finite difference scheme for the FitzHugh–Nagumo equations. International Journal of Computer Mathematics, 2019, 96, 1993-2009.	1.8	12
23	Performance of some finite difference methods for a 3D advection–diffusion equation. Revista De La Real Academia De Ciencias Exactas, Fisicas Y Naturales - Serie A: Matematicas, 2018, 112, 1179-1210.	1.2	7
24	Atmospheric flow modelling using some finite difference methods. AIP Conference Proceedings, 2018, , .	0.4	2
25	Comparison of some finite difference methods for the Black-Scholes equation. AIP Conference Proceedings, 2018, , .	0.4	2
26	Analysis of multilevel finite volume approximation of 2D convective Cahn–Hilliard equation. Japan Journal of Industrial and Applied Mathematics, 2017, 34, 253-304.	0.9	5
27	Performance of UPFD scheme under some different regimes of advection, diffusion and reaction. International Journal of Numerical Methods for Heat and Fluid Flow, 2017, 27, 1412-1429.	2.8	20
28	Comparative study of some numerical methods to solve a 3D advection-diffusion equation. AIP Conference Proceedings, 2017, , .	0.4	1
29	Some novel numerical schemes for 1-D Korteweg-de-Vries Burger's equation. AIP Conference Proceedings, 2017, , .	0.4	2
30	Computational study of three numerical methods for some linear and nonlinear advection-diffusion-reaction problems. Progress in Computational Fluid Dynamics, 2017, 17, 114.	0.2	14
31	Some optimised schemes for 1D Korteweg-de-Vries equation. Progress in Computational Fluid Dynamics, 2017, 17, 250.	0.2	10
32	A priori analysis of multilevel finite volume approximation of 1D convective Cahn–Hilliard equation. Afrika Matematika, 2017, 28, 1193-1233.	0.8	1
33	Comparative study of three numerical schemes for contaminant transport with Kinetic Langmuir Sorption. AIP Conference Proceedings, 2016, , .	0.4	2
34	A computational study of three numerical methods for some advection-diffusion problems. Applied Mathematics and Computation, 2016, 272, 629-647.	2.2	18
35	Analysis of the unconditionally positive finite difference scheme for advection-diffusion-reaction equations with different regimes. AIP Conference Proceedings, 2016, , .	0.4	3
36	The technique of MIEELDLD as a measure of the shock-capturing property of numerical methods for hyperbolic conservation laws. Progress in Computational Fluid Dynamics, 2015, 15, 247.	0.2	6

3

#	Article	IF	CITATIONS
37	A computational study of some numerical schemes for a test case with steep boundary layers. AIP Conference Proceedings, 2015 , , .	0.4	O
38	Optimized Low Dispersion and Low Dissipation Runge-Kutta Algorithms in Computational Aeroacoustics. Applied Mathematics and Information Sciences, 2014, 8, 57-68.	0.5	0
39	Applications and Spectral Analysis of some Optimized High Order Low Dispersion and Low Dissipation Schemes. Applied Mathematics and Information Sciences, 2014, 8, 993-1001.	0.5	O
40	Time-Splitting Procedures for the Numerical Solution of the 2D Advection-Diffusion Equation. Mathematical Problems in Engineering, 2013, 2013, 1-20.	1.1	4
41	Numerical Solution of the 1D Advection-Diffusion Equation Using Standard and Nonstandard Finite Difference Schemes. Journal of Applied Mathematics, 2013, 2013, 1-14.	0.9	28
42	Optimized Weighted Essentially Nonoscillatory Third-Order Schemes for Hyperbolic Conservation Laws. Journal of Applied Mathematics, 2013, 2013, 1-12.	0.9	13
43	The Technique of MIEELDLD in Computational Aeroacoustics. Journal of Applied Mathematics, 2012, 2012, 1-30.	0.9	4
44	Investigating the shock-capturing properties of some composite numerical schemes for the 1-D linear advection equation. International Journal of Computer Applications in Technology, 2012, 43, 79.	0.5	10
45	Comparison of some optimisation techniques for numerical schemes discretising equations with advection terms. International Journal of Innovative Computing and Applications, 2012, 4, 12.	0.2	9
46	Optimised composite numerical schemes in $2\hat{a} \in D$ for hyperbolic conservation laws. International Journal for Numerical Methods in Fluids, 2012, 69, 1522-1549.	1.6	6
47	Some applications of the concept of minimized integrated exponential error for low dispersion and low dissipation. International Journal for Numerical Methods in Fluids, 2012, 68, 244-268.	1.6	12
48	The concept of minimized integrated exponential error for low dispersion and low dissipation schemes. International Journal for Numerical Methods in Fluids, 2011, 65, 578-601.	1.6	15
49	Control of numerical effects of dispersion and dissipation in numerical schemes for efficient shock-capturing through an optimal Courant number. Computers and Fluids, 2008, 37, 767-783.	2.5	20
50	Efficient Shock-Capturing Numerical Schemes Using the Approach of Minimised Integrated Square Difference Error for Hyperbolic Conservation Laws., 2007,, 774-789.		4
51	A Comparative Study of Three Composite Schemes: Lax-Wendroff/Lax-Friedrichs, Mac-Cormack/Lax-Friedrichs and Corrected Lax-Friedrichs Lax-FriedrichS Schemes, Based on Conservation Laws., 2006,, 823-824.		1
52	CTCS Schemes for Second Order Wave Equation: Numerical Results and Spectral Analysis. International Journal of Engineering Research in Africa, 0, 55, 47-65.	0.7	1
53	Convergence Analysis and Approximate Optimal Temporal Step Sizes for Some Finite Difference Methods Discretising Fisher's Equation. Frontiers in Applied Mathematics and Statistics, 0, 8, .	1.3	0