Giuseppina De Simone

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2290689/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Multiple Binding Modes of Inhibitors to Carbonic Anhydrases: How to Design Specific Drugs Targeting 15 Different Isoforms?. Chemical Reviews, 2012, 112, 4421-4468.	47.7	1,056
2	Crystal structure of the catalytic domain of the tumor-associated human carbonic anhydrase IX. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 16233-16238.	7.1	451
3	Histone deacetylase and Cullin3–RENKCTD11 ubiquitin ligase interplay regulates Hedgehog signalling through Gli acetylation. Nature Cell Biology, 2010, 12, 132-142.	10.3	292
4	Biochemical Characterization of CA IX, One of the Most Active Carbonic Anhydrase Isozymes. Journal of Biological Chemistry, 2008, 283, 27799-27809.	3.4	258
5	Exploiting the hydrophobic and hydrophilic binding sites for designing carbonic anhydrase inhibitors. Expert Opinion on Drug Discovery, 2013, 8, 793-810.	5.0	229
6	Anticancer carbonic anhydrase inhibitors: a patent review (2008 – 2013). Expert Opinion on Therapeutic Patents, 2013, 23, 737-749.	5.0	226
7	Inhibition of carbonic anhydrase IX targets primary tumors, metastases, and cancer stem cells: Three for the price of one. Medicinal Research Reviews, 2018, 38, 1799-1836.	10.5	207
8	Carbonic Anhydrase Inhibitors:  X-ray and Molecular Modeling Study for the Interaction of a Fluorescent Antitumor Sulfonamide with Isozyme II and IX. Journal of the American Chemical Society, 2006, 128, 8329-8335.	13.7	200
9	(In)organic anions as carbonic anhydrase inhibitors. Journal of Inorganic Biochemistry, 2012, 111, 117-129.	3.5	186
10	Carbonic anhydrase inhibitors. Zonisamide is an effective inhibitor of the cytosolic isozyme II and mitochondrial isozyme V: solution and X-ray crystallographic studies. Bioorganic and Medicinal Chemistry Letters, 2005, 15, 2315-2320.	2.2	176
11	Carbonic anhydrase IX: Biochemical and crystallographic characterization of a novel antitumor target. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2010, 1804, 404-409.	2.3	166
12	Carbonic anhydrase inhibitors as emerging drugs for the treatment of obesity. Expert Opinion on Emerging Drugs, 2008, 13, 383-392.	2.4	165
13	Carbonic Anhydrase Inhibitors:Â Stacking with Phe131 Determines Active Site Binding Region of Inhibitors As Exemplified by the X-ray Crystal Structure of a Membrane-Impermeant Antitumor Sulfonamide Complexed with Isozyme II. Journal of Medicinal Chemistry, 2005, 48, 5721-5727.	6.4	157
14	Are Carbonic Anhydrase Inhibitors Suitable for Obtaining Antiobesity Drugs ?. Current Pharmaceutical Design, 2008, 14, 655-660.	1.9	150
15	The crystal structure of a hyper-thermophilic carboxylesterase from the archaeon Archaeoglobus fulgidus 1 1Edited by R. Huber. Journal of Molecular Biology, 2001, 314, 507-518.	4.2	148
16	Insights into peptide nucleic acid (PNA) structural features: The crystal structure of a D-lysine-based chiral PNA-DNA duplex. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 12021-12026.	7.1	143
17	A snapshot of a transition state analogue of a novel thermophilic esterase belonging to the subfamily of mammalian hormone-sensitive lipase 1 1Edited by D. Rees. Journal of Molecular Biology, 2000, 303, 761-771.	4.2	128
18	Carbonic Anhydrase Inhibitors Targeting Metabolism and Tumor Microenvironment. Metabolites, 2020, 10. 412.	2.9	116

#	Article	IF	CITATIONS
19	Out of the active site binding pocket for carbonic anhydrase inhibitors. Chemical Communications, 2015, 51, 302-305.	4.1	111
20	The zinc coordination pattern in the Îcarbonic anhydrase from Plasmodium falciparum is different from all other carbonic anhydrase genetic families. Bioorganic and Medicinal Chemistry Letters, 2015, 25, 1385-1389.	2.2	108
21	Investigations of the esterase, phosphatase, and sulfatase activities of the cytosolic mammalian carbonic anhydrase isoforms I, II, and XIII with 4-nitrophenyl esters as substrates. Bioorganic and Medicinal Chemistry Letters, 2008, 18, 2267-2271.	2.2	104
22	Carbonic Anhydrase Inhibitors:Â Hypoxia-Activatable Sulfonamides Incorporating Disulfide Bonds that Target the Tumor-Associated Isoform IXâ€. Journal of Medicinal Chemistry, 2006, 49, 5544-5551.	6.4	100
23	Drug Design Studies of the Novel Antitumor Targets Carbonic Anhydrase IX and XII. Current Medicinal Chemistry, 2010, 17, 1516-1526.	2.4	100
24	Structural and inhibition insights into carbonic anhydrase CDCA1 from the marine diatom Thalassiosira weissflogii. Biochimie, 2012, 94, 1232-1241.	2.6	100
25	X-ray structure of the first `extremo-α-carbonic anhydrase', a dimeric enzyme from the thermophilic bacterium <i>Sulfurihydrogenibium yellowstonense</i> YO3AOP1. Acta Crystallographica Section D: Biological Crystallography, 2013, 69, 1150-1159.	2.5	100
26	2-Substituted Estradiol Bis-sulfamates, Multitargeted Antitumor Agents:Â Synthesis, In Vitro SAR, Protein Crystallography, and In Vivo Activityâ€. Journal of Medicinal Chemistry, 2006, 49, 7683-7696.	6.4	98
27	Crystal structure of human carbonic anhydrase XIII and its complex with the inhibitor acetazolamide. Proteins: Structure, Function and Bioinformatics, 2009, 74, 164-175.	2.6	97
28	Dithiocarbamates are strong inhibitors of the beta-class fungal carbonic anhydrases from Cryptococcus neoformans, Candida albicans and Candida glabrata. Bioorganic and Medicinal Chemistry Letters, 2012, 22, 859-862.	2.2	97
29	Antiobesity Carbonic Anhydrase Inhibitors. Current Topics in Medicinal Chemistry, 2007, 7, 879-884.	2.1	95
30	Carbonic anhydrase inhibitors: Valdecoxib binds to a different active site region of the human isoform II as compared to the structurally related cyclooxygenase II †selective' inhibitor celecoxib. Bioorganic and Medicinal Chemistry Letters, 2006, 16, 437-442.	2.2	93
31	Crystal structure of the C183S/C217S mutant of human CA VII in complex with acetazolamide. Bioorganic and Medicinal Chemistry Letters, 2010, 20, 5023-5026.	2.2	81
32	The proteoglycan region of the tumor-associated carbonic anhydrase isoform IX acts as anintrinsic buffer optimizing CO2 hydration at acidic pH values characteristic of solid tumors. Bioorganic and Medicinal Chemistry Letters, 2009, 19, 5825-5828.	2.2	79
33	Hypoxia-Targeting Carbonic Anhydrase IX Inhibitors by a New Series of Nitroimidazole-Sulfonamides/Sulfamides/Sulfamates. Journal of Medicinal Chemistry, 2013, 56, 8512-8520.	6.4	76
34	Recent Advances in Research on the Most Novel Carbonic Anhydrases,CA XIII and XV. Current Pharmaceutical Design, 2008, 14, 672-678.	1.9	72
35	Which Carbonic Anhydrases are Targeted by the Antiepileptic Sulfonamides and Sulfamates?. Chemical Biology and Drug Design, 2009, 74, 317-321.	3.2	72
36	Crystal structure of the most catalytically effective carbonic anhydrase enzyme known, SazCA from the thermophilic bacterium Sulfurihydrogenibium azorense. Bioorganic and Medicinal Chemistry Letters, 2015, 25, 2002-2006.	2.2	72

#	Article	IF	CITATIONS
37	Benzoxaborole as a new chemotype for carbonic anhydrase inhibition. Chemical Communications, 2016, 52, 11983-11986.	4.1	69
38	Thermostable Carbonic Anhydrases in Biotechnological Applications. International Journal of Molecular Sciences, 2015, 16, 15456-15480.	4.1	66
39	Hydroxamate represents a versatile zinc binding group for the development of new carbonic anhydrase inhibitors. Chemical Communications, 2012, 48, 8838.	4.1	63
40	High GADA titer increases the risk of insulin requirement in LADA patients: a 7-year follow-up (NIRAD) Tj ETQq0 0	0 rgBT /O	verlock 10 Tf
41	Cloning, expression and purification of the complete domain of the η -carbonic anhydrase from <i>Plasmodium falciparum</i> . Journal of Enzyme Inhibition and Medicinal Chemistry, 2016, 31, 54-59.	5.2	59

	54-59.		
42	Carbonic anhydrase VII is S-glutathionylated without loss of catalytic activity and affinity for sulfonamide inhibitors. Bioorganic and Medicinal Chemistry Letters, 2012, 22, 1560-1564.	2.2	53
43	Development of Potent Carbonic Anhydrase Inhibitors Incorporating Both Sulfonamide and Sulfamide Groups. Journal of Medicinal Chemistry, 2012, 55, 6776-6783.	6.4	52
44	Structure–Activity Relationships of C-17 Cyano-Substituted Estratrienes as Anticancer Agents. Journal of Medicinal Chemistry, 2008, 51, 1295-1308.	6.4	50
45	Carbonic anhydrase inhibitors: X-ray crystallographic studies for the binding of N-substituted benzenesulfonamides to human isoform II. Chemical Communications, 2011, 47, 11636.	4.1	50
46	Carbonic Anhydrase IX as a Target for Designing Novel Anticancer Drugs. Current Medicinal Chemistry, 2012, 19, 821-830.	2.4	50
47	Carbonic Anhydrase Inhibitors: Bioreductive Nitro-Containing Sulfonamides with Selectivity for Targeting the Tumor Associated Isoforms IX and XII. Journal of Medicinal Chemistry, 2008, 51, 3230-3237.	6.4	49
48	Cadmium-Containing Carbonic Anhydrase CDCA1 in Marine Diatom Thalassiosira weissflogii. Marine Drugs, 2015, 13, 1688-1697.	4.6	48
49	Carbonic anhydrase inhibitors: Inhibition of human, bacterial, and archaeal isozymes with benzene-1,3-disulfonamides—Solution and crystallographic studies. Bioorganic and Medicinal Chemistry Letters, 2007, 17, 4201-4207.	2.2	47
50	A Substrate-induced Switch in the Reaction Mechanism of a Thermophilic Esterase. Journal of Biological Chemistry, 2004, 279, 6815-6823.	3.4	45
51	The structural comparison between membraneâ€associated human carbonic anhydrases provides insights into drug design of selective inhibitors. Biopolymers, 2014, 101, 769-778.	2.4	44
52	Characterization of Carbonic Anhydrase IX Interactome Reveals Proteins Assisting Its Nuclear Localization in Hypoxic Cells. Journal of Proteome Research, 2013, 12, 282-292.	3.7	43
53	A Combined Crystallographic and Theoretical Study Explains the Capability of Carboxylic Acids to Adopt Multiple Binding Modes in the Active Site of Carbonic Anhydrases. Chemistry - A European Journal, 2016, 22, 97-100.	3.3	43
54	Carbonic anhydrase inhibitors: X-ray crystal structure of a benzenesulfonamide strong CA II and CA IX inhibitor bearing a pentafluorophenylaminothioureido tail in complex with isozyme II. Bioorganic and Medicinal Chemistry Letters, 2005, 15, 1937-1942.	2.2	40

#	Article	IF	CITATIONS
55	The first example of a significant active site conformational rearrangement in a carbonic anhydrase-inhibitor adduct: the carbonic anhydrase l–topiramate complex. Organic and Biomolecular Chemistry, 2010, 8, 3528.	2.8	40
56	Discovery of 1,1′-Biphenyl-4-sulfonamides as a New Class of Potent and Selective Carbonic Anhydrase XIV Inhibitors. Journal of Medicinal Chemistry, 2015, 58, 8564-8572.	6.4	40
57	Probing Molecular Interactions between Human Carbonic Anhydrases (hCAs) and a Novel Class of Benzenesulfonamides. Journal of Medicinal Chemistry, 2017, 60, 4316-4326.	6.4	40
58	Anticancer steroid sulfatase inhibitors: synthesis of a potent fluorinated second-generation agent, <i>in vitro</i> and <i>in vivo</i> activities, molecular modeling, and protein crystallography. Molecular Cancer Therapeutics, 2008, 7, 2435-2444.	4.1	39
59	Carbonic anhydrase inhibitors: Binding of an antiglaucoma glycosyl-sulfanilamide derivative to human isoform II and its consequences for the drug design of enzyme inhibitors incorporating sugar moieties. Bioorganic and Medicinal Chemistry Letters, 2007, 17, 1726-1731.	2.2	38
60	Inhibition of the R1 fragment of the cadmium-containing ζ-class carbonic anhydrase from the diatom Thalassiosira weissflogii with anions. Bioorganic and Medicinal Chemistry Letters, 2010, 20, 4745-4748.	2.2	38
61	Kinetic and anion inhibition studies of a β-carbonic anhydrase (FbiCA 1) from the C4 plant Flaveria bidentis. Bioorganic and Medicinal Chemistry Letters, 2013, 23, 1626-1630.	2.2	38
62	Molecular modeling study for the binding of zonisamide and topiramate to the human mitochondrial carbonic anhydrase isoform VA. Bioorganic and Medicinal Chemistry, 2007, 15, 4152-4158.	3.0	37
63	Carbonic anhydrase inhibitors: The X-ray crystal structure of ethoxzolamide complexed to human isoform II reveals the importance of thr200 and gln92 for obtaining tight-binding inhibitors. Bioorganic and Medicinal Chemistry Letters, 2008, 18, 2669-2674.	2.2	35
64	Insights into the role of reactive sulfhydryl groups of Carbonic Anhydrase III and VII during oxidative damage. Journal of Enzyme Inhibition and Medicinal Chemistry, 2017, 32, 5-12.	5.2	35
65	Metal Ion Substitution in the Catalytic Site Greatly Affects the Binding of Sulfhydryl-Containing Compounds to Leucyl Aminopeptidase,. Biochemistry, 2006, 45, 3226-3234.	2.5	34
66	Carbonic anhydrase inhibitors: X-ray crystallographic studies for the binding of 5-amino-1,3,4-thiadiazole-2-sulfonamide and 5-(4-amino-3-chloro-5-fluorophenylsulfonamido)-1,3,4-thiadiazole-2-sulfonamide to human isoform II. Bioorganic and Medicinal Chemistry Letters, 2006, 16, 6204-6208.	2.2	32
67	Recent Advances in Structural Studies of the Carbonic Anhydrase Family: The Crystal Structure of Human CA IX and CA XIII. Current Pharmaceutical Design, 2010, 16, 3246-3254.	1.9	32
68	Protective Role of Carbonic Anhydrases III and VII in Cellular Defense Mechanisms upon Redox Unbalance. Oxidative Medicine and Cellular Longevity, 2018, 2018, 1-9.	4.0	32
69	Functional and structural features of the oxyanion hole in a thermophilic esterase from <i>Alicyclobacillus acidocaldarius</i> . Proteins: Structure, Function and Bioinformatics, 2008, 71, 1721-1731.	2.6	31
70	Structural Analysis of BldR from Sulfolobus solfataricus Provides Insights into the Molecular Basis of Transcriptional Activation in Archaea by MarR Family Proteins. Journal of Molecular Biology, 2009, 388, 559-569.	4.2	31
71	Exploring structural properties of potent human carbonic anhydrase inhibitors bearing a 4-(cycloalkylamino-1-carbonyl)benzenesulfonamide moiety. European Journal of Medicinal Chemistry, 2019, 163, 443-452.	5.5	31
72	Human carbonic anhydrase VII protects cells from oxidative damage. Biological Chemistry, 2013, 394, 1343-1348.	2.5	30

#	Article	IF	CITATIONS
73	Multiple catalytically active thioredoxin folds: a winning strategy for many functions. Cellular and Molecular Life Sciences, 2010, 67, 3797-3814.	5.4	28
74	Carbonic anhydrase inhibitors: Crystallographic and solution binding studies for the interaction of a boron-containing aromatic sulfamide with mammalian isoforms l–XV. Bioorganic and Medicinal Chemistry Letters, 2010, 20, 3601-3605.	2.2	27
75	Faox enzymes inhibited Maillard reaction development during storage both in protein glucose model system and low lactose UHT milk. Amino Acids, 2014, 46, 279-288.	2.7	27
76	The Crystal Structure of an EST2 Mutant Unveils Structural Insights on the H Group of the Carboxylesterase/Lipase Family. Journal of Molecular Biology, 2004, 343, 137-146.	4.2	26
77	Insights on a New PDI-like Family: Structural and Functional Analysis of a Protein Disulfide Oxidoreductase from the Bacterium Aquifex aeolicus. Journal of Molecular Biology, 2006, 356, 155-164.	4.2	26
78	X-ray crystallographic and kinetic investigations of 6-sulfamoyl-saccharin as a carbonic anhydrase inhibitor. Organic and Biomolecular Chemistry, 2015, 13, 4064-4069.	2.8	26
79	The anticonvulsant sulfamide JNJ-26990990 and its S,S-dioxide analog strongly inhibit carbonic anhydrases: solution and X-ray crystallographic studies. Organic and Biomolecular Chemistry, 2016, 14, 4853-4858.	2.8	26
80	Crystal structure of the human carbonic anhydrase II adduct with 1-(4-sulfamoylphenyl-ethyl)-2,4,6-triphenylpyridinium perchlorate, a membrane-impermeant, isoform selective inhibitor. Journal of Enzyme Inhibition and Medicinal Chemistry, 2018, 33, 151-157.	5.2	26
81	Insights into the binding mode of sulphamates and sulphamides to hCA II: crystallographic studies and binding free energy calculations. Journal of Enzyme Inhibition and Medicinal Chemistry, 2017, 32, 1002-1011.	5.2	26
82	Insights into the catalytic mechanism of the Bcp family: Functional and structural analysis of Bcp1 from <i>Sulfolobus solfataricus</i> . Proteins: Structure, Function and Bioinformatics, 2009, 76, 995-1006.	2.6	25
83	Are Carbonic Anhydrases Suitable Targets to Fight Protozoan Parasitic Diseases?. Current Medicinal Chemistry, 2019, 25, 5266-5278.	2.4	25
84	From natural to synthetic multisite thrombin inhibitors. , 1999, 51, 19-39.		24
85	C68 from the <i>Sulfolobus islandicus</i> plasmid–virus pSSVx is a novel member of the AbrB-like transcription factor family. Biochemical Journal, 2011, 435, 157-166.	3.7	24
86	The Crystal Structure of a hCA VII Variant Provides Insights into the Molecular Determinants Responsible for Its Catalytic Behavior. International Journal of Molecular Sciences, 2018, 19, 1571.	4.1	23
87	Biochemical and Structural Insights into Carbonic Anhydrase XII/Fab6A10 Complex. Journal of Molecular Biology, 2019, 431, 4910-4921.	4.2	23
88	Carbonic Anhydrases: An Overview. , 2015, , 3-13.		22
89	A Novel Member of the Protein Disulfide Oxidoreductase Family from Aeropyrum pernix K1: Structure, Function and Electrostatics. Journal of Molecular Biology, 2006, 362, 743-752.	4.2	21
90	Carbonic Anhydrase Inhibitors. Comparison of Aliphatic Sulfamate/Bis-sulfamate Adducts with Isozymes II and IX as a Platform for Designing Tight-Binding, More Isoform-Selective Inhibitors. Journal of Medicinal Chemistry, 2009, 52, 5990-5998.	6.4	21

GIUSEPPINA DE SIMONE

#	Article	IF	CITATIONS
91	Crystal structure of an <i>S</i> â€formylglutathione hydrolase from <i>Pseudoalteromonas haloplanktis</i> TAC125. Biopolymers, 2010, 93, 669-677.	2.4	21
92	Exploring the catalytic mechanism of the first dimeric Bcp: Functional, structural and docking analyses of Bcp4 from Sulfolobus solfataricus. Biochimie, 2010, 92, 1435-1444.	2.6	20
93	Biochemical, biophysical and molecular dynamics studies on the proteoglycan-like domain of carbonic anhydrase IX. Cellular and Molecular Life Sciences, 2018, 75, 3283-3296.	5.4	20
94	Catechols: a new class of carbonic anhydrase inhibitors. Chemical Communications, 2020, 56, 13033-13036.	4.1	20
95	Inhibition of carbonic anhydrases IX/XII by SLC-0111 boosts cisplatin effects in hampering head and neck squamous carcinoma cell growth and invasion. Journal of Experimental and Clinical Cancer Research, 2022, 41, 122.	8.6	20
96	Functionalized cyclodextrins: Synthesis and structural characterization of 6-deoxy-6-{4-[N-tert-butoxycarbonyl-2-aminoethyl]-imidazolyl}-cyclomaltoheptaose. Supramolecular Chemistry, 1996, 7, 47-54.	1.2	19
97	Biochemical characterization of the chloroplastic β -carbonic anhydrase from <i>Flaveria bidentis</i> (L.) "Kuntze― Journal of Enzyme Inhibition and Medicinal Chemistry, 2014, 29, 500-504.	5.2	19
98	Inhibition of carbonic anhydrases by a substrate analog: benzyl carbamate directly coordinates the catalytic zinc ion mimicking bicarbonate binding. Chemical Communications, 2018, 54, 10312-10315.	4.1	19
99	Human carbonic anhydrases and post-translational modifications: a hidden world possibly affecting protein properties and functions. Journal of Enzyme Inhibition and Medicinal Chemistry, 2020, 35, 1450-1461.	5.2	19
100	Biochemical and structural characterisation of a protozoan beta-carbonic anhydrase from <i>Trichomonas vaginalis</i> . Journal of Enzyme Inhibition and Medicinal Chemistry, 2020, 35, 1292-1299.	5.2	19
101	Human α-thrombin inhibition by the highly selective compounds N-ethoxycarbonyl-d-phe-pro-α-azalys p-nitrophenyl ester and N-carbobenzoxy-pro-α-azalys p-nitrophenyl ester: A kinetic, thermodynamic and x-ray crystallographic study. Journal of Molecular Biology, 1997, 269, 558-569.	4.2	17
102	Hirunorms are true hirudin mimetics. The crystal structure of human αâ€ŧhrombinâ€hirunorm V complex. Protein Science, 1998, 7, 243-253.	7.6	17
103	Disclosing the Interaction of Carbonic Anhydrase IX with Cullin-Associated NEDD8-Dissociated Protein 1 by Molecular Modeling and Integrated Binding Measurements. ACS Chemical Biology, 2017, 12, 1460-1465.	3.4	17
104	Phenyl(thio)phosphon(amid)ate Benzenesulfonamides as Potent and Selective Inhibitors of Human Carbonic Anhydrases II and VII Counteract Allodynia in a Mouse Model of Oxaliplatin-Induced Neuropathy. Journal of Medicinal Chemistry, 2020, 63, 5185-5200.	6.4	16
105	Probing the reactivity of nucleophile residues in human 2,3-diphosphoglycerate/deoxy-hemoglobin complex by aspecific chemical modifications. FEBS Letters, 1999, 452, 190-194.	2.8	15
106	Design, synthesis and characterization of a peptide able to bind proteins of the KCTD family: implications for KCTD—cullin 3 recognition. Journal of Peptide Science, 2011, 17, 373-376.	1.4	15
107	Kinetic and X-ray crystallographic investigations of substituted 2-thio-6-oxo-1,6-dihydropyrimidine–benzenesulfonamides acting as carbonic anhydrase inhibitors. Bioorganic and Medicinal Chemistry, 2016, 24, 3643-3648.	3.0	15
108	L-Histidinol Dehydrogenase as a New Target for Old Diseases. Current Topics in Medicinal Chemistry, 2016, 16, 2369-2378.	2.1	15

#	Article	IF	CITATIONS
109	Crystallization and preliminary X-ray diffraction studies of the carboxylesterase EST2 from Alicyclobacillus acidocaldarius. Acta Crystallographica Section D: Biological Crystallography, 1999, 55, 1348-1349.	2.5	14
110	The crystal structure of Afc-containing peptides. Biopolymers, 2000, 53, 150-160.	2.4	14
111	Design of Weakly Basic Thrombin Inhibitors Incorporating Novel P1 Binding Functions:Â Molecular and X-ray Crystallographic Studiesâ€. Biochemistry, 2003, 42, 9013-9021.	2.5	14
112	Hydrophobic Substituents of the Phenylmethylsulfamide Moiety Can Be Used for the Development of New Selective Carbonic Anhydrase Inhibitors. BioMed Research International, 2014, 2014, 1-11.	1.9	14
113	A Novel Inhibitor of Carbonic Anhydrases Prevents Hypoxia-Induced TNBC Cell Plasticity. International Journal of Molecular Sciences, 2020, 21, 8405.	4.1	14
114	Sulfolobus solfataricus thiol redox puzzle: characterization of an atypical protein disulfide oxidoreductase. Extremophiles, 2014, 18, 219-228.	2.3	13
115	Carbonic Anhydrase Inhibitors: Binding of Indanesulfonamides to the Human Isoform II. ChemMedChem, 2008, 3, 473-477.	3.2	11
116	The crystal structure of αâ€ŧhrombinâ€hirunorm IV complex reveals a novel specificity site recognition mode. Protein Science, 1999, 8, 91-95.	7.6	11
117	Hydroxylamine-O-sulfonamide is a versatile lead compound for the development of carbonic anhydrase inhibitors. Chemical Communications, 2015, 51, 11519-11522.	4.1	10
118	Inhibition of the newly discovered β‑carbonic anhydrase from the protozoan pathogen Trichomonas vaginalis with inorganic anions and small molecules. Journal of Inorganic Biochemistry, 2020, 213, 111274.	3.5	10
119	Intrinsically disordered features of carbonic anhydrase IX proteoglycan-like domain. Cellular and Molecular Life Sciences, 2021, 78, 2059-2067.	5.4	10
120	Zeta-carbonic anhydrases show CS2 hydrolase activity: A new metabolic carbon acquisition pathway in diatoms?. Computational and Structural Biotechnology Journal, 2021, 19, 3427-3436.	4.1	10
121	Thermal-Stable Carbonic Anhydrases: A Structural Overview. Sub-Cellular Biochemistry, 2014, 75, 387-404.	2.4	9
122	Structural basis for the rational design of new anti-Brucella agents: The crystal structure of the C366S mutant of l-histidinol dehydrogenase from Brucella suis. Biochimie, 2014, 97, 114-120.	2.6	9
123	Human Carbonic Anhydrases: Catalytic Properties, Structural Features, and Tissue Distribution. , 2015, , 17-30.		9
124	Sultam based Carbonic Anhydrase VII inhibitors for the management of neuropathic pain. European Journal of Medicinal Chemistry, 2022, 227, 113956.	5.5	9
125	An Integrated Structural and Computational Study of the Thermostability of Two Thioredoxin Mutants from Alicyclobacillus acidocaldarius. Journal of Bacteriology, 2003, 185, 4285-4289.	2.2	8
126	Conformational studies of heterochiral peptides with diastereoisomeric residues: Crystal and molecular structures of linear dipeptides derived from leucine, isoleucine, and allo-isoleucine. Biopolymers, 1995, 36, 401-408.	2.4	7

#	Article	IF	CITATIONS
127	Exploration of the residues modulating the catalytic features of human carbonic anhydrase XIII by a site-specific mutagenesis approach. Journal of Enzyme Inhibition and Medicinal Chemistry, 2019, 34, 1506-1510.	5.2	7
128	The Amazing World of IDPs in Human Diseases. Biomolecules, 2021, 11, 333.	4.0	7
129	Exploring benzoxaborole derivatives as carbonic anhydrase inhibitors: a structural and computational analysis reveals their conformational variability as a tool to increase enzyme selectivity. Journal of Enzyme Inhibition and Medicinal Chemistry, 2019, 34, 1498-1505.	5.2	7
130	Post-translational modifications in tumor-associated carbonic anhydrases. Amino Acids, 2022, 54, 543-558.	2.7	7
131	Crystallization and preliminary X-ray diffraction studies of aD-lysine-based chiral PNA–DNA duplex. Acta Crystallographica Section D: Biological Crystallography, 2002, 58, 553-555.	2.5	6
132	Crystallization and preliminary X-ray diffraction studies of a protein disulfide oxidoreductase fromAquifex aeolicus. Acta Crystallographica Section D: Biological Crystallography, 2004, 60, 2076-2077.	2.5	6
133	2-Mercaptobenzoxazoles: a class of carbonic anhydrase inhibitors with a novel binding mode to the enzyme active site. Chemical Communications, 2020, 56, 8297-8300.	4.1	6
134	Looking toward the Rim of the Active Site Cavity of Druggable Human Carbonic Anhydrase Isoforms. ACS Medicinal Chemistry Letters, 2020, 11, 1000-1005.	2.8	6
135	Interaction Studies between Carbonic Anhydrase and a Sulfonamide Inhibitor by Experimental and Theoretical Approaches. ACS Medicinal Chemistry Letters, 2022, 13, 271-277.	2.8	6
136	Biochemical and Structural Insights into the Winged Helix Domain of P150, the Largest Subunit of the Chromatin Assembly Factor 1. International Journal of Molecular Sciences, 2022, 23, 2160.	4.1	6
137	Benzyl alcohol inhibits carbonic anhydrases by anchoring to the zinc coordinated water molecule. Biochemical and Biophysical Research Communications, 2021, 548, 217-221.	2.1	5
138	Comparative Effects on Blood Pressure and Regional Hemodynamics of Nicardipine and Captopril. Journal of Cardiovascular Pharmacology, 1991, 18, 807-812.	1.9	4
139	Crystallization and preliminary X-ray diffraction studies of a protein disulfide oxidoreductase fromAeropyrum pernixK1. Acta Crystallographica Section F: Structural Biology Communications, 2005, 61, 335-336.	0.7	4
140	Targeted treatment of anaerobic cancer. Patent evaluation of US2016279084 and US2017056350. Expert Opinion on Therapeutic Patents, 2019, 29, 1-6.	5.0	4
141	Inhibition of the β-carbonic anhydrase from the protozoan pathogen <i>Trichomonas vaginalis</i> with sulphonamides. Journal of Enzyme Inhibition and Medicinal Chemistry, 2021, 36, 330-335.	5.2	4
142	The Amazing World of IDPs in Human Diseases II. Biomolecules, 2022, 12, 369.	4.0	4
143	Responses of serum insulin and blood pressure to cold and handgrip in obese patients. International Journal of Cardiology, 1991, 32, 353-359.	1.7	3

Editorial [Hot Topic-II: Zinc Metallo-Enzymes as Target for Drug Design (Guest Editor: Giuseppina De) Tj ETQq0 0 0 rgBT /Overlock 10 Tf

#	Article	IF	CITATIONS
145	Crystallization and preliminary X-ray diffraction studies of Aes acetyl-esterase fromEscherichia coli. Acta Crystallographica Section D: Biological Crystallography, 2003, 59, 1846-1848.	2.5	2
146	Carbonic Anhydrase II as Target for Drug Design. , 2015, , 51-90.		2
147	α-Carbonic anhydrases. , 2019, , 19-54.		2
148	The crystal structures of 2-(4-benzhydrylpiperazin-1-yl)- <i>N</i> -(4-sulfamoylphenyl)acetamide in complex with human carbonic anhydrase II and VII provide insights into selective CA inhibitor development. New Journal of Chemistry, 2021, 45, 147-152.	2.8	2
149	Design, synthesis and biochemical evaluation of novel carbonic anhydrase inhibitors triggered by structural knowledge on hCA VII. Bioorganic and Medicinal Chemistry, 2021, 44, 116279.	3.0	2
150	Cardiovascular Response to Adrenergic Stimulation during Treatment with Tertatolol. A New Non-Cardioselective Beta-Blocking Agent in Primary Hypertensive Patients International Heart Journal, 1991, 32, 435-444.	0.6	1
151	Carbonic Anhydrase VII. , 2015, , 151-168.		1
152	ζ-Carbonic anhydrases. , 2019, , 131-137.		1
153	Î⊷ and Î,-carbonic anhydrases. , 2019, , 139-148.		1
154	High-Risk Acute Myeloid Leukemia: A Pediatric Prospective. Biomedicines, 2022, 10, 1405.	3.2	1
155	Editorial (Thematic Issue: Bacterial Metallo-Enzymes as Drug Targets). Current Topics in Medicinal Chemistry, 2016, 16, 2329-2329.	2.1	0
156	Recent Advances in the Development of New Therapeutic Tools Against Major Parasitic Diseases. Current Medicinal Chemistry, 2019, 25, 5238-5238.	2.4	0
157	CDCA1 From Thalassiosira weissflogii as Representative Member of ζ-Class CAs: General Features and Biotechnological Applications. , 2015, , 351-359.		0
158	Beta-Carbonic Anhydrase 1 from Trichomonas Vaginalis as New Antiprotozoan Drug Target. Topics in Medicinal Chemistry, 2021, , 1.	0.8	0