List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2290642/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Ultrarobust, tough and highly stretchable self-healing materials based on cartilage-inspired noncovalent assembly nanostructure. Nature Communications, 2021, 12, 1291.	5.8	254
2	One-step, size-controlled synthesis of gold nanoparticles at room temperature using plant tannin. Green Chemistry, 2010, 12, 395-399.	4.6	198
3	Polyphenol-grafted collagen fiber as reductant and stabilizer for one-step synthesis of size-controlled gold nanoparticles and their catalytic application to 4-nitrophenol reduction. Green Chemistry, 2011, 13, 651.	4.6	167
4	Vulcanization kinetics of graphene/natural rubber nanocomposites. Polymer, 2013, 54, 3314-3323.	1.8	166
5	Carbon Nanotubeâ€Encapsulated Noble Metal Nanoparticle Hybrid as a Cathode Material for Liâ€Oxygen Batteries. Advanced Functional Materials, 2014, 24, 6516-6523.	7.8	157
6	Bioinspired Engineering of Two Different Types of Sacrificial Bonds into Chemically Cross-Linked <i>cis</i> -1,4-Polyisoprene toward a High-Performance Elastomer. Macromolecules, 2016, 49, 8593-8604.	2.2	142
7	Adsorptive recovery of Au3+ from aqueous solutions using bayberry tannin-immobilized mesoporous silica. Journal of Hazardous Materials, 2010, 183, 793-798.	6.5	137
8	Room-temperature autonomous self-healing glassy polymers with hyperbranched structure. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 11299-11305.	3.3	134
9	Cure kinetics and morphology of natural rubber reinforced by the <i>in situ</i> polymerization of zinc dimethacrylate. Journal of Applied Polymer Science, 2010, 115, 99-106.	1.3	115
10	Super tough and strong self-healing elastomers based on polyampholytes. Journal of Materials Chemistry A, 2018, 6, 19066-19074.	5.2	112
11	One-step room-temperature synthesis of Au@Pd core–shell nanoparticles with tunable structure using plant tannin as reductant and stabilizer. Green Chemistry, 2011, 13, 950.	4.6	109
12	Toughening rubbers with a hybrid filler network of graphene and carbon nanotubes. Journal of Materials Chemistry A, 2015, 3, 22385-22392.	5.2	106
13	Hg(II) removal from aqueous solution by bayberry tannin-immobilized collagen fiber. Journal of Hazardous Materials, 2009, 170, 1141-1148.	6.5	96
14	Synthesis of highly active and reusable supported gold nanoparticles and their catalytic applications to 4-nitrophenol reduction. Green Chemistry, 2011, 13, 2801.	4.6	95
15	One-Pot Facile Synthesis of Cerium-Doped TiO ₂ Mesoporous Nanofibers Using Collagen Fiber As the Biotemplate and Its Application in Visible Light Photocatalysis. Journal of Physical Chemistry C, 2013, 117, 9739-9746.	1.5	88
16	Enhanced mechanical properties of graphene/natural rubber nanocomposites at low content. Polymer International, 2014, 63, 1674-1681.	1.6	87
17	Adsorption removal of phosphate in industrial wastewater by using metal-loaded skin split waste. Journal of Hazardous Materials, 2009, 166, 1261-1265.	6.5	86
18	Graphene oxide induced crosslinking and reinforcement of elastomers. Composites Science and Technology, 2017, 144, 223-229.	3.8	85

#	Article	IF	CITATIONS
19	Graphene as a prominent antioxidant for diolefin elastomers. Journal of Materials Chemistry A, 2015, 3, 5942-5948.	5.2	82
20	Strong and tough self-healing elastomers enabled by dual reversible networks formed by ionic interactions and dynamic covalent bonds. Polymer, 2018, 157, 172-179.	1.8	78
21	Toughening diene elastomers by strong hydrogen bond interactions. Polymer, 2016, 106, 21-28.	1.8	76
22	Highly Stretchable and Self-Healing "Solid–Liquid―Elastomer with Strain-Rate Sensing Capability. ACS Applied Materials & Interfaces, 2019, 11, 19534-19540.	4.0	76
23	Ferromagnetic hierarchical carbon nanofiber bundles derived from natural collagen fibers: truly lightweight and high-performance microwave absorption materials. Journal of Materials Chemistry C, 2015, 3, 10146-10153.	2.7	75
24	Vanadium Pentoxideâ€Based Cathode Materials for Lithiumâ€ion Batteries: Morphology Control, Carbon Hybridization, and Cation Doping. Particle and Particle Systems Characterization, 2015, 32, 276-294.	1.2	69
25	Ultra-Tough, Strong, and Defect-Tolerant Elastomers with Self-Healing and Intelligent-Responsive Abilities. ACS Applied Materials & Interfaces, 2019, 11, 29373-29381.	4.0	65
26	Tannin-immobilized mesoporous silica bead (BT–SiO2) as an effective adsorbent of Cr(III) in aqueous solutions. Journal of Hazardous Materials, 2010, 173, 33-39.	6.5	63
27	Sound absorption characteristics of polymer microparticles. Journal of Applied Polymer Science, 2006, 101, 2675-2679.	1.3	62
28	Synergistic reinforcement of nanoclay and carbon black in natural rubber. Polymer International, 2010, 59, 1397-1402.	1.6	60
29	Lightweight and high-performance electromagnetic radiation shielding composites based on a surface coating of Cu@Ag nanoflakes on a leather matrix. Journal of Materials Chemistry C, 2016, 4, 914-920.	2.7	56
30	Synthesis of polyborosiloxane and its reversible physical crosslinks. RSC Advances, 2014, 4, 32894-32901.	1.7	52
31	Super-Resolution Fluorescence Imaging of Spatial Organization of Proteins and Lipids in Natural Rubber. Biomacromolecules, 2017, 18, 1705-1712.	2.6	49
32	New evidence disclosed for networking in natural rubber by dielectric relaxation spectroscopy. Soft Matter, 2015, 11, 2290-2299.	1.2	48
33	Synthesis and thermal properties of modified room temperature vulcanized (RTV) silicone rubber using polyhedral oligomeric silsesquioxane (POSS) as a cross linking agent. RSC Advances, 2014, 4, 41453-41460.	1.7	46
34	Towards a Supertough Thermoplastic Polyisoprene Elastomer Based on a Biomimic Strategy. Angewandte Chemie - International Edition, 2018, 57, 15836-15840.	7.2	45
35	Hierarchically structured C@SnO ₂ @C nanofiber bundles with high stability and effective ambipolar diffusion kinetics for high-performance Li-ion batteries. Journal of Materials Chemistry A, 2016, 4, 18783-18791.	5.2	42
36	Damping mechanism of chlorobutyl rubber and phenolic resin vulcanized blends. Journal of Materials Science, 2007, 42, 7256-7262.	1.7	39

#	Article	IF	CITATIONS
37	Effect of polyhedral oligomeric silsesquioxane (POSS) on crystallization behaviors of POSS/polydimethylsiloxane rubber nanocomposites. RSC Advances, 2014, 4, 6275-6283.	1.7	39
38	Synthesis of nanosilicaâ€based immobile antioxidant and its antioxidative efficiency in SBR composites. Polymer Composites, 2013, 34, 1856-1862.	2.3	38
39	Accelerated thermal ageing studies of polydimethylsiloxane (PDMS) rubber. Journal of Polymer Research, 2012, 19, 1.	1.2	36
40	New insights into reinforcement mechanism of nanoclay-filled isoprene rubber during uniaxial deformation by in situ synchrotron X-ray diffraction. RSC Advances, 2015, 5, 25171-25182.	1.7	35
41	Synergistic effect of CB and GO/CNT hybrid fillers on the mechanical properties and fatigue behavior of NR composites. RSC Advances, 2018, 8, 10573-10581.	1.7	35
42	Electron-Donating Effect Enabled Simultaneous Improvement on the Mechanical and Self-Healing Properties of Bromobutyl Rubber Ionomers. ACS Applied Materials & Interfaces, 2020, 12, 53239-53246.	4.0	35
43	Soluble amphiphilic tannin-stabilized Pd(0) nanoparticles: a highly active and selective homogeneous catalyst used in a biphasic catalytic system. Chemical Communications, 2009, , 4687.	2.2	34
44	Thermal oxidative degradation of styrene-butadiene rubber (SBR) studied by 2D correlation analysis and kinetic analysis. Journal of Thermal Analysis and Calorimetry, 2014, 115, 647-657.	2.0	34
45	Self-recovery magnetic hydrogel with high strength and toughness using nanofibrillated cellulose as a dispersing agent and filler. Carbohydrate Polymers, 2018, 196, 82-91.	5.1	34
46	Compatibility driven self-strengthening during the radical-responsive remolding process of poly-isoprene vitrimers. Journal of Materials Chemistry A, 2019, 7, 25324-25332.	5.2	34
47	Transparent, robust, water-resistant and high-barrier self-healing elastomers reinforced with dynamic supramolecular nanosheets with switchable interfacial connections. Journal of Materials Chemistry A, 2020, 8, 9013-9020.	5.2	34
48	Tough Underwater Super-tape Composed of Semi-interpenetrating Polymer Networks with a Water-Repelling Liquid Surface. ACS Applied Materials & Interfaces, 2021, 13, 1535-1544.	4.0	33
49	A rheological study on non-rubber component networks in natural rubber. RSC Advances, 2015, 5, 91742-91750.	1.7	32
50	A facile method to fabricate hybrid hydrogels with mechanical toughness using a novel multifunctional cross-linker. RSC Advances, 2017, 7, 35311-35319.	1.7	32
51	The proper glass transition temperature of amorphous polymers on dynamic mechanical spectra. Journal of Thermal Analysis and Calorimetry, 2014, 116, 447-453.	2.0	31
52	Tough, ultrastretchable and tear-resistant hydrogels enabled by linear macro-cross-linker. Polymer Chemistry, 2019, 10, 3503-3513.	1.9	31
53	Facile synthesis of mesoporous sulfated Ce/TiO2nanofiber solid superacid with nanocrystalline frameworks by using collagen fibers as a biotemplate and its application in esterification. RSC Advances, 2014, 4, 4010-4019.	1.7	30
54	Mechanically robust and shape-memory hybrid aerogels for super-insulating applications. Journal of Materials Chemistry A, 2017, 5, 15048-15055.	5.2	29

#	Article	IF	CITATIONS
55	The synthesis of graphene-based antioxidants to promote anti-thermal properties of styrene-butadiene rubber. RSC Advances, 2017, 7, 53596-53603.	1.7	29
56	Collagen-based breathable, humidity-ultrastable and degradable on-skin device. Journal of Materials Chemistry C, 2019, 7, 2548-2556.	2.7	29
57	Three-Dimensional Programmable, Reconfigurable, and Recyclable Biomass Soft Actuators Enabled by Designing an Inverse Opal-Mimetic Structure with Exchangeable Interfacial Crosslinks. ACS Applied Materials & Interfaces, 2020, 12, 15757-15764.	4.0	29
58	Simultaneously reinforcing and toughening epoxy network with a novel hyperbranched polysiloxane modifier. Journal of Applied Polymer Science, 2018, 135, 46340.	1.3	27
59	Mechanically robust, ultrastretchable and thermal conducting composite hydrogel and its biomedical applications. Chemical Engineering Journal, 2019, 360, 231-242.	6.6	27
60	Self-Healing Amorphous Polymers with Room-Temperature Phosphorescence Enabled by Boron-Based Dative Bonds. ACS Applied Polymer Materials, 2020, 2, 699-705.	2.0	27
61	Confinement effect of polystyrene on the relaxation behavior of polyisobutylene. Journal of Polymer Science, Part B: Polymer Physics, 2010, 48, 2165-2172.	2.4	26
62	Improved resistance to crack growth of natural rubber by the inclusion of nanoclay. Polymers for Advanced Technologies, 2012, 23, 85-91.	1.6	26
63	A strain-adaptive, self-healing, breathable and perceptive bottle-brush material inspired by skin. Journal of Materials Chemistry A, 2020, 8, 24645-24654.	5.2	26
64	Thermal and mechanical activation of dynamically stable ionic interaction toward self-healing strengthening elastomers. Materials Horizons, 2021, 8, 2553-2561.	6.4	26
65	Synthesis and Aqueous Solution Properties of a Novel NonIonic, Amphiphilic Comb-Type Polyacrylamide. Journal of Macromolecular Science - Physics, 2011, 50, 1691-1704.	0.4	25
66	Enhanced electrical conductivity and mechanical property of SBS/graphene nanocomposite. Journal of Polymer Research, 2014, 21, 1.	1.2	25
67	Effect of diphenylsiloxane unit content on aggregation structure of poly(dimethylsiloxane <i> oâ€</i> diphenylsiloxane). Journal of Polymer Science, Part B: Polymer Physics, 2008, 46, 72-79.	2.4	24
68	A facile approach to the fabrication of graphene-based nanocomposites by latex mixing and in situ reduction. Colloid and Polymer Science, 2013, 291, 2279-2287.	1.0	24
69	Plant Polyphenols as Multifunctional Platforms To Fabricate Three-Dimensional Superhydrophobic Foams for Oil/Water and Emulsion Separation. Industrial & Engineering Chemistry Research, 2018, 57, 16442-16450.	1.8	24
70	A Degradable and Self-Healable Vitrimer Based on Non-isocyanate Polyurethane. Frontiers in Chemistry, 2020, 8, 585569.	1.8	24
71	Wide-range linear viscoelastic hydrogels with high mechanical properties and their applications in quantifiable stress-strain sensors. Chemical Engineering Journal, 2020, 399, 125697.	6.6	24
72	Effect of nanosilica-based immobile antioxidant on thermal oxidative degradation of SBR. RSC Advances, 2015, 5, 62788-62796.	1.7	23

#	Article	IF	CITATIONS
73	A low-cost and water resistant biomass adhesive derived from the hydrolysate of leather waste. RSC Advances, 2017, 7, 4024-4029.	1.7	23
74	Constructing hydrophobic protection for ionic interactions toward water, acid, and base-resistant self-healing elastomers and electronic devices. Science China Materials, 2021, 64, 1780-1790.	3.5	23
75	Collagen fibers with tuned wetting properties for dual separation of oil-in-water and water-in-oil emulsion. Journal of Materials Chemistry A, 2020, 8, 24388-24392.	5.2	23
76	A novel impedance matching material derived from polymer micro-particles. Journal of Materials Science, 2007, 42, 199-206.	1.7	22
77	Damping characteristics of chlorobutyl rubber/poly(ethyl acrylate)/piezoelectric ceramic/carbon black composites. Journal of Applied Polymer Science, 2008, 108, 3670-3676.	1.3	22
78	Detecting different modes of molecular motion in polyisobutylene and chlorinated butyl rubber by using dielectric probes. Soft Matter, 2011, 7, 9224.	1.2	22
79	Molecular dynamics in chlorinated butyl rubber containing organophilic montmorillonite nanoparticles. Journal of Polymer Research, 2011, 18, 2213-2220.	1.2	22
80	Influences of polyhedral oligomeric silsesquioxanes (POSSs) containing different functional groups on crystallization and melting behaviors of POSS/polydimethylsiloxane rubber composites. RSC Advances, 2014, 4, 41364-41370.	1.7	22
81	Enhanced power factor within graphene hybridized carbon aerogels. RSC Advances, 2015, 5, 25650-25656.	1.7	22
82	Stability, seepage and displacement characteristics of heterogeneous branched-preformed particle gels for enhanced oil recovery. RSC Advances, 2018, 8, 4881-4889.	1.7	22
83	Competitive adsorption for simultaneous removal of emulsified water and surfactants from mixed surfactant-stabilized emulsions with high flux. Journal of Materials Chemistry A, 2018, 6, 14058-14064.	5.2	22
84	Solution Grafting of Maleic Anhydride on Low-Density Polyethylene: Effect on Crystallization Behavior. Journal of Macromolecular Science - Physics, 2013, 52, 1265-1282.	0.4	21
85	Simultaneous reinforcement and toughness improvement of an epoxy–phenolic network with a hyperbranched polysiloxane modifier. RSC Advances, 2018, 8, 17606-17615.	1.7	21
86	Iridium atalyzed Carbenoid Insertion of Sulfoxonium Ylides for Synthesis of Quinoxalines and βâ€Keto Thioethers in Water. European Journal of Organic Chemistry, 2020, 2020, 4635-4638.	1.2	21
87	Effect of incompletely condensed tri-silanol-phenyl-POSS on the thermal stability of silicone rubber. Polymer Bulletin, 2019, 76, 2835-2850.	1.7	19
88	Characterizing the naturally occurring sacrificial bond within natural rubber. Polymer, 2019, 161, 41-48.	1.8	19
89	Synthesis of a New Nanosilica-Based Antioxidant and Its Influence on the Anti-Oxidation Performance of Natural Rubber. Journal of Macromolecular Science - Physics, 2013, 52, 84-94.	0.4	18
90	Study of molecular weight and chain branching architectures of natural rubber. Journal of Applied Polymer Science, 2016, 133, .	1.3	18

#	Article	IF	CITATIONS
91	Tanning agent free leather making enabled by the dispersity of collagen fibers combined with superhydrophobic coating. Green Chemistry, 2021, 23, 3581-3587.	4.6	18
92	Reinforcing self-healing and Re-processable ionomers with carbon black: An investigation on the network structure and molecular mobility. Composites Science and Technology, 2021, 216, 109035.	3.8	18
93	Synthesis and thermal properties of novel room temperature vulcanized (RTV) silicone rubber containing POSS units in polysioxane main chains. Journal of Polymer Research, 2013, 20, 1.	1.2	17
94	Investigation on the thermal oxidative aging mechanism and lifetime prediction of butyl rubber. Macromolecular Research, 2013, 21, 10-16.	1.0	17
95	Nucleating effect of multi-walled carbon nanotubes and graphene on the crystallization kinetics and melting behavior of olefin block copolymers. RSC Advances, 2014, 4, 19024.	1.7	17
96	Natural collagen fiber-enabled facile synthesis of carbon@Fe ₃ O ₄ core–shell nanofiber bundles and their application as ultrahigh-rate anode materials for Li-ion batteries. RSC Advances, 2016, 6, 10824-10830.	1.7	17
97	A fast-healing and high-performance metallosupramolecular elastomer based on pyridine-Cu coordination. Science China Materials, 2022, 65, 1943-1951.	3.5	17
98	Strainâ€induced crystallization of natural rubber with high strain rates. Journal of Polymer Science, Part B: Polymer Physics, 2012, 50, 1630-1637.	2.4	16
99	Antioxidation efficiency and reinforcement performance of precipitated-silica-based immobile antioxidants obtained by a sol method in natural rubber composites. RSC Advances, 2015, 5, 92344-92353.	1.7	16
100	Synergistic Combination of the Capillary Effect of Collagen Fibers and Size-Sieving Merits of Metal–Organic Frameworks for Emulsion Separation with High Flux. Industrial & Engineering Chemistry Research, 2020, 59, 14925-14934.	1.8	16
101	Effect of Alkyl Side Chain Length on Relaxation Behaviors in Poly(n-alkyl Acrylates) and Poly(n-alkyl) Tj ETQq1 1	0.784314 0.4	rgBT_/Overlo
102	Strainâ€induced crystallization behavior of polychloroprene rubber. Journal of Applied Polymer Science, 2011, 121, 37-42.	1.3	15
103	Study on the self rosslinking behavior based on polychloroprene rubber and epoxidized natural rubber. Journal of Applied Polymer Science, 2012, 125, 1084-1090.	1.3	15
104	Thermogravimetric studies of styrene–butadiene rubber (SBR) after accelerated thermal aging. Journal of Thermal Analysis and Calorimetry, 2014, 115, 247-254.	2.0	14
105	Dynamics of Poly (butyl acrylate) and Poly (ethyl acrylate) with internal double bonds. Journal of Polymer Research, 2014, 21, 1.	1.2	14
106	Detecting structural orientation in isoprene rubber/multiwall carbon nanotube nanocomposites at different scales during uniaxial deformation. Polymer International, 2018, 67, 258-268.	1.6	14
107	Collagen Fiberâ€Based Advanced Separation Materials: Recent Developments and Future Perspectives. Advanced Materials, 2022, 34, e2107891	11.1	14
108	Strainâ€induced crystallization behavior of natural rubber and transâ€1,4â€polyisoprene crosslinked blends. Journal of Applied Polymer Science, 2011, 120, 1346-1354.	1.3	13

#	Article	IF	CITATIONS
109	Collagen fiber membrane as multi-functional support enabled rational design of ultrahigh-flux separation membrane for the remediation of oil contamination in water. Journal of Hazardous Materials, 2022, 432, 128649.	6.5	13
110	Antiaging Mechanism for Partly Crosslinked Polyacrylamide in Saline Solution under High-Temperature and High-Salinity Conditions. Journal of Macromolecular Science - Physics, 2013, 52, 113-126.	0.4	12
111	Propargyl ether-functionalized poly(m-phenylene): a new precursor for the preparation of polymers with high modulus and high Tg. RSC Advances, 2015, 5, 23009-23014.	1.7	12
112	A facile synthesis of a highly stable superhydrophobic nanofibrous film for effective oil/water separation. RSC Advances, 2016, 6, 82352-82358.	1.7	12
113	The effects of proteins and phospholipids on the network structure of natural rubber: a rheological study in bulk and in solution. Journal of Polymer Research, 2020, 27, 1.	1.2	12
114	Insights into Regional Wetting Behaviors of Amphiphilic Collagen for Dual Separation of Emulsions. ACS Applied Materials & Interfaces, 2021, 13, 18209-18217.	4.0	12
115	Rheological Behavior of Partially Hydrolyzed Polyacrylamide Hydrogel Produced by Chemical Gelation. Journal of Macromolecular Science - Physics, 2007, 47, 26-38.	0.4	11
116	Effect of diphenylsiloxane unit content on relaxation behavior of poly(dimethylsiloxaneâ€ <i>co</i> â€diphenylsiloxane). Journal of Polymer Science, Part B: Polymer Physics, 2008, 46, 1652-1659.	2.4	11
117	Pd(0) Nanoparticle Stabilized by Tannin-grafted SiO2 Beads and Its Application in Liquid-hydrogenation of Unsaturated Organic Compounds. Catalysis Letters, 2009, 133, 192-200.	1.4	11
118	Relationship between the material properties and fatigue crackâ€growth characteristics of natural rubber filled with different carbon blacks. Journal of Applied Polymer Science, 2010, 117, 3441-3447.	1.3	11
119	Study on the stretch induced phase transition of $\hat{I}\pm$ trans-1,4-polyisoprene by in-situ SAXS and WAXS measurements. Journal of Polymer Research, 2014, 21, 1.	1.2	11
120	A Shish-kebab superstructure in low-crystallinity elastomer nanocomposites: Morphology regulation and load-transfer. Macromolecular Research, 2015, 23, 537-544.	1.0	11
121	Mechanically robust, notch-insensitive, fatigue resistant and self-recoverable hydrogels with homogeneous and viscoelastic network constructed by a novel multifunctional cross-linker. Polymer, 2019, 179, 121661.	1.8	11
122	Structural evolution during uniaxial deformation of natural rubber reinforced with nanoâ€alumina. Polymers for Advanced Technologies, 2011, 22, 2001-2008.	1.6	10
123	The dynamic characteristics of silicone rubber isolator. Journal Wuhan University of Technology, Materials Science Edition, 2012, 27, 130-133.	0.4	10
124	Study on the morphology, rheology and surface of dynamically vulcanized chlorinated butyl rubber/polyethylacrylate extrudates: effect of extrusion temperature and times. Journal of Materials Science, 2007, 42, 4494-4501.	1.7	9
125	The influence of montmorillonite on the antiâ€reversion in the rubber–clay composites. Journal of Applied Polymer Science, 2010, 118, 306-311.	1.3	9
126	Synthesis and aqueous solution properties of novel thermosensitive polyacrylamide derivatives. Journal of Applied Polymer Science, 2013, 130, 766-775.	1.3	9

#	Article	IF	CITATIONS
127	Effect of nanosilica on thermal oxidative degradation of SBR. Journal of Thermal Analysis and Calorimetry, 2014, 116, 359-366.	2.0	9
128	Intermediate state and weak intermolecular interactions of α-trans-1,4-Polyisoprene during the gradual cooling crystallization process investigated by In situ FTIR and two-dimensional infrared correlation spectroscopy. Macromolecular Research, 2013, 21, 493-501.	1.0	8
129	A review of the slow relaxation processes in the glass–rubber transition region of amorphous polymers. Phase Transitions, 2015, 88, 843-858.	0.6	8
130	Towards a Supertough Thermoplastic Polyisoprene Elastomer Based on a Biomimic Strategy. Angewandte Chemie, 2018, 130, 16062-16066.	1.6	8
131	Improved mechanical properties and special reinforcement mechanism of natural rubber reinforced by <i>in situ</i> polymerization of zinc dimethacrylate. Journal of Applied Polymer Science, 2010, 116, 920-928.	1.3	7
132	Natural rubber with low heat generation achieved by the inclusion of boron carbide. Journal of Applied Polymer Science, 2010, 118, 2050-2055.	1.3	7
133	Skin collagen fiber-based radar absorbing materials. Science Bulletin, 2011, 56, 202-208.	1.7	7
134	Study on the mechanism of the formation of polyhedral oligomeric silsesquioxanes by the 2D correlation infrared spectral. Journal of Applied Polymer Science, 2012, 125, 3658-3665.	1.3	7
135	Rheological behaviors and molecular motions of semi-diluted Xanthan solutions under shear: Experimental studies. Polymer Science - Series A, 2014, 56, 687-696.	0.4	7
136	A novel phosphatidylcholine-modified polyisoprene: synthesis and characterization. Colloid and Polymer Science, 2016, 294, 433-439.	1.0	7
137	Double network epoxies with simultaneous high mechanical property and shape memory performance. Journal of Polymer Research, 2018, 25, 1.	1.2	7
138	Kinetics study on the formation of resol with high content of hydroxymethyl group. Journal of Applied Polymer Science, 2008, 107, 3157-3162.	1.3	6
139	An effect of OMMT on the antiâ€reversion in NR/CR blend system. Journal of Applied Polymer Science, 2009, 111, 673-679.	1.3	6
140	Synthesis and rheological properties of hydrophobically modified poly(vinyl alcohol). Journal of Polymer Research, 2012, 19, 1.	1.2	6
141	Mechanism of Formation of Partially Crosslinked Polyacrylamide Complexes. Journal of Macromolecular Science - Physics, 2013, 52, 22-35.	0.4	6
142	Homogenization of natural rubber network induced by nanoclay. Journal of Applied Polymer Science, 2014, 131, .	1.3	6
143	Relaxation behavior and time-temperature superposition (TTS) profiles of thermally aged styrene-butadiene rubber (SBR). Macromolecular Research, 2014, 22, 820-825.	1.0	6
144	Polyphenolicâ€Chemistryâ€Enabled, Mechanically Robust, Flame Resistant and Superhydrophobic Membrane for Separation of Mixed Surfactantâ€Stabilized Emulsions. Chemistry - A European Journal, 2018, 24, 10953-10958.	1.7	6

#	Article	IF	CITATIONS
145	Mechanically robust smart hydrogels enabled by an organic-inorganic hybridized crosslinker. Polymer, 2021, 214, 123236.	1.8	6
146	Rheological Properties of Template Polymerization Polyacrylamide Aqueous Solutions. Journal of Macromolecular Science - Physics, 2011, 50, 2203-2213.	0.4	5
147	Observing Nucleation Transition in Stretched Natural Rubber through Self-Seeding. Journal of Physical Chemistry B, 2015, 119, 11887-11892.	1.2	4
148	Mechanochemistry modified waste rubber powder and its application in hydrogel. Journal of Polymer Research, 2016, 23, 1.	1.2	4
149	Radionuclide tolerance mechanism of plants for ultraselective enrichment of low content of thorium with exceptional selectivity coefficient. Journal of Hazardous Materials, 2019, 380, 120893.	6.5	4
150	Soft while strong mechanical shock tolerable e-skins. Journal of Materials Chemistry A, 2022, 10, 8186-8194.	5.2	4
151	Tannery solid waste-derived cross-scale deformable piezoresistive sensors for monitoring human body motions. Journal of Materials Chemistry C, 2022, 10, 8199-8205.	2.7	4
152	Dynamic Fatigue Behavior of Natural Rubber Reinforced with Nanoclay and Carbon Black. Journal of Macromolecular Science - Physics, 2011, 50, 1646-1657.	0.4	3
153	Crack initiation of natural rubber under high temperature fatigue loading. Journal of Applied Polymer Science, 2012, 124, 4274-4280.	1.3	3
154	Interfacial crystallization of lowâ€crystallinity elastomer incorporated by multiâ€walled carbon nanotubes: Mechanical reinforcement, structural evolution and enhanced thermal stability. Journal of Applied Polymer Science, 2015, 132, .	1.3	3
155	Effect of vinyl acetate on aging mechanism of polyacrylate under UV light. Journal of Applied Polymer Science, 2009, 114, 1717-1724.	1.3	2
156	The Variation of Composition of Resols Under Different Reaction Conditions. Journal of Macromolecular Science - Pure and Applied Chemistry, 2010, 48, 142-147.	1.2	2
157	Design and Dynamics Investigation for a Silicone Rubber Shock Absorber. Journal of Macromolecular Science - Physics, 2011, 50, 540-550.	0.4	2
158	Polyhedral oligomeric silsesquioxane/silica/polydimethylsiloxane rubber composites with enhanced mechanical and thermal properties. Journal of Applied Polymer Science, 2015, 132, .	1.3	2
159	Structural evolution of OBC/carbon nanotube bundle nanocomposites under uniaxial deformation. RSC Advances, 2015, 5, 32909-32919.	1.7	2
160	Sensitive Parameter Predicting Steady-State Pressure Difference of Partially Crosslinked Polyacrylamide Suspension in Core Flow Experiments. Journal of Macromolecular Science - Physics, 2013, 52, 1030-1040.	0.4	1
161	Flow Mechanism of Partially Cross-Linked Polyacrylamide in Porous Media. Journal of Dispersion Science and Technology, 2014, 35, 1270-1277.	1.3	1

Laser Ablation Induced Toughness Enhancement in Twin Crystal Copper. , 2019, , .

1

#	Article	IF	CITATIONS
163	Influence of Oligopeptide Length and Distribution on Polyisoprene Properties. Polymers, 2021, 13, 4408.	2.0	1
164	Steam activation tuned porous structure and surface wetting behaviors of mesoporous biochars for corrosive oily wastewater treatments. Journal of Chemical Technology and Biotechnology, 2022, 97, 2179-2185.	1.6	1
165	Rücktitelbild: Towards a Supertough Thermoplastic Polyisoprene Elastomer Based on a Biomimic Strategy (Angew. Chem. 48/2018). Angewandte Chemie, 2018, 130, 16136-16136.	1.6	0