Lihong V Wang

List of Publications by Citations

Source: https://exaly.com/author-pdf/2290639/lihong-v-wang-publications-by-citations.pdf

Version: 2024-04-19

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

768 56,464 114 papers citations h-index

960 67,216 6.2 ext. papers ext. citations avg, IF

6.2 8.18 Vg, IF L-index

217

g-index

#	Paper	IF	Citations
768	Photoacoustic tomography: in vivo imaging from organelles to organs. <i>Science</i> , 2012 , 335, 1458-62	33.3	2663
767	Toward discovery science of human brain function. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2010 , 107, 4734-9	11.5	2183
766	MCMLMonte Carlo modeling of light transport in multi-layered tissues. <i>Computer Methods and Programs in Biomedicine</i> , 1995 , 47, 131-46	6.9	2073
765	Photoacoustic imaging in biomedicine. <i>Review of Scientific Instruments</i> , 2006 , 77, 041101	1.7	1481
764	Functional photoacoustic microscopy for high-resolution and noninvasive in vivo imaging. <i>Nature Biotechnology</i> , 2006 , 24, 848-51	44.5	1304
763	Looking and listening to light: the evolution of whole-body photonic imaging. <i>Nature Biotechnology</i> , 2005 , 23, 313-20	44.5	1245
762	Noninvasive laser-induced photoacoustic tomography for structural and functional in vivo imaging of the brain. <i>Nature Biotechnology</i> , 2003 , 21, 803-6	44.5	1238
761	Gold nanocages covered by smart polymers for controlled release with near-infrared light. <i>Nature Materials</i> , 2009 , 8, 935-9	27	1232
760	Fullerenes with metals inside. <i>The Journal of Physical Chemistry</i> , 1991 , 95, 7564-7568		1111
759	Porphysome nanovesicles generated by porphyrin bilayers for use as multimodal biophotonic contrast agents. <i>Nature Materials</i> , 2011 , 10, 324-32	27	1043
758	Multiscale photoacoustic microscopy and computed tomography. <i>Nature Photonics</i> , 2009 , 3, 503-509	33.9	907
757	Gold nanostructures: a class of multifunctional materials for biomedical applications. <i>Chemical Society Reviews</i> , 2011 , 40, 44-56	58.5	662
756	A practical guide to photoacoustic tomography in the life sciences. <i>Nature Methods</i> , 2016 , 13, 627-38	21.6	620
755	Universal back-projection algorithm for photoacoustic computed tomography. <i>Physical Review E</i> , 2005 , 71, 016706	2.4	619
754	In vivo photoacoustic tomography of chemicals: high-resolution functional and molecular optical imaging at new depths. <i>Chemical Reviews</i> , 2010 , 110, 2756-82	68.1	601
753	Optical-resolution photoacoustic microscopy for in vivo imaging of single capillaries. <i>Optics Letters</i> , 2008 , 33, 929-31	3	521
75²	Comparison study of gold nanohexapods, nanorods, and nanocages for photothermal cancer treatment. <i>ACS Nano</i> , 2013 , 7, 2068-77	16.7	492

(2014-2015)

751	High-speed label-free functional photoacoustic microscopy of mouse brain in action. <i>Nature Methods</i> , 2015 , 12, 407-10	21.6	413
75°	Photoacoustic tomography and sensing in biomedicine. <i>Physics in Medicine and Biology</i> , 2009 , 54, R59-97	73.8	401
749	Photoacoustic Tomography of a Nanoshell Contrast Agent in the in Vivo Rat Brain. <i>Nano Letters</i> , 2004 , 4, 1689-1692	11.5	385
748	In vivo molecular photoacoustic tomography of melanomas targeted by bioconjugated gold nanocages. <i>ACS Nano</i> , 2010 , 4, 4559-64	16.7	376
747	Photoacoustic tomography of a rat cerebral cortex in vivo with au nanocages as an optical contrast agent. <i>Nano Letters</i> , 2007 , 7, 3798-802	11.5	366
746	A new theranostic system based on gold nanocages and phase-change materials with unique features for photoacoustic imaging and controlled release. <i>Journal of the American Chemical Society</i> , 2011 , 133, 4762-5	16.4	341
745	Near-infrared gold nanocages as a new class of tracers for photoacoustic sentinel lymph node mapping on a rat model. <i>Nano Letters</i> , 2009 , 9, 183-8	11.5	332
744	Tutorial on Photoacoustic Microscopy and Computed Tomography. <i>IEEE Journal of Selected Topics in Quantum Electronics</i> , 2008 , 14, 171-179	3.8	321
743	Prospects of photoacoustic tomography. <i>Medical Physics</i> , 2008 , 35, 5758-67	4.4	314
742	Time-reversed ultrasonically encoded optical focusing into scattering media. <i>Nature Photonics</i> , 2011 , 5, 154	33.9	311
74 ¹	Noninvasive imaging of hemoglobin concentration and oxygenation in the rat brain using high-resolution photoacoustic tomography. <i>Journal of Biomedical Optics</i> , 2006 , 11, 024015	3.5	307
740	In vivo dark-field reflection-mode photoacoustic microscopy. <i>Optics Letters</i> , 2005 , 30, 625-7	3	295
739	Second-generation optical-resolution photoacoustic microscopy with improved sensitivity and speed. <i>Optics Letters</i> , 2011 , 36, 1134-6	3	293
738	Photoacoustic tomography: principles and advances. <i>Progress in Electromagnetics Research</i> , 2014 , 147, 1-22	3.8	281
737	Deeply penetrating photoacoustic tomography in biological tissues enhanced with an optical contrast agent. <i>Optics Letters</i> , 2005 , 30, 507-9	3	281
736	Simultaneous functional photoacoustic and ultrasonic endoscopy of internal organs in vivo. <i>Nature Medicine</i> , 2012 , 18, 1297-1302	50.5	277
735	Time-domain reconstruction for thermoacoustic tomography in a spherical geometry. <i>IEEE Transactions on Medical Imaging</i> , 2002 , 21, 814-22	11.7	274
734	Single-shot compressed ultrafast photography at one hundred billion frames per second. <i>Nature</i> , 2014 , 516, 74-7	50.4	265

733	Radioactive 198Au-doped nanostructures with different shapes for in vivo analyses of their biodistribution, tumor uptake, and intratumoral distribution. <i>ACS Nano</i> , 2014 , 8, 4385-94	16.7	264
732	Photoacoustic imaging of living mouse brain vasculature using hollow gold nanospheres. <i>Biomaterials</i> , 2010 , 31, 2617-26	15.6	251
731	Imaging of hemoglobin oxygen saturation variations in single vessels in vivo using photoacoustic microscopy. <i>Applied Physics Letters</i> , 2007 , 90, 053901	3.4	243
730	Reconstructions in limited-view thermoacoustic tomography. <i>Medical Physics</i> , 2004 , 31, 724-33	4.4	243
729	Simultaneous Molecular and Hypoxia Imaging of Brain Tumors In Vivo Using Spectroscopic Photoacoustic Tomography. <i>Proceedings of the IEEE</i> , 2008 , 96, 481-489	14.3	239
728	Practical reconstruction method for bioluminescence tomography. <i>Optics Express</i> , 2005 , 13, 6756-71	3.3	236
727	Photoacoustic Microscopy. Laser and Photonics Reviews, 2013 , 7, 758	8.3	233
726	Photoacoustic imaging and characterization of the microvasculature. <i>Journal of Biomedical Optics</i> , 2010 , 15, 011101	3.5	230
725	Label-free oxygen-metabolic photoacoustic microscopy in vivo. <i>Journal of Biomedical Optics</i> , 2011 , 16, 076003	3.5	228
724	Single-impulse Panoramic Photoacoustic Computed Tomography of Small-animal Whole-body Dynamics at High Spatiotemporal Resolution. <i>Nature Biomedical Engineering</i> , 2017 , 1,	19	218
723	High-resolution photoacoustic tomography of resting-state functional connectivity in the mouse brain. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2014 , 111, 21-6	11.5	217
722	Sensitivity of photoacoustic microscopy. <i>Photoacoustics</i> , 2014 , 2, 87-101	9	207
721	Deeply penetrating in vivo photoacoustic imaging using a clinical ultrasound array system. <i>Biomedical Optics Express</i> , 2010 , 1, 278-284	3.5	203
720	Noninvasive photoacoustic angiography of animal brains in vivo with near-infrared light and an optical contrast agent. <i>Optics Letters</i> , 2004 , 29, 730-2	3	201
719	CONVconvolution for responses to a finite diameter photon beam incident on multi-layered tissues. <i>Computer Methods and Programs in Biomedicine</i> , 1997 , 54, 141-50	6.9	194
718	Exact frequency-domain reconstruction for thermoacoustic tomographyI: Planar geometry. <i>IEEE Transactions on Medical Imaging</i> , 2002 , 21, 823-8	11.7	190
717	Gold Nanocages: A Novel Class of Multifunctional Nanomaterials for Theranostic Applications. <i>Advanced Functional Materials</i> , 2010 , 20, 3684-3694	15.6	189
716	Photoacoustically guided wavefront shaping for enhanced optical focusing in scattering media. Nature Photonics, 2015, 9, 126-132	33.9	188

(2011-2010)

715	Sentinel lymph nodes and lymphatic vessels: noninvasive dual-modality in vivo mapping by using indocyanine green in ratsvolumetric spectroscopic photoacoustic imaging and planar fluorescence imaging. <i>Radiology</i> , 2010 , 255, 442-50	20.5	188
714	Tutorial on photoacoustic tomography. <i>Journal of Biomedical Optics</i> , 2016 , 21, 61007	3.5	188
713	Single-breath-hold photoacoustic computed tomography of the breast. <i>Nature Communications</i> , 2018 , 9, 2352	17.4	186
712	A microrobotic system guided by photoacoustic computed tomography for targeted navigation in intestines. <i>Science Robotics</i> , 2019 , 4,	18.6	186
711	Sentinel lymph nodes in the rat: noninvasive photoacoustic and US imaging with a clinical US system. <i>Radiology</i> , 2010 , 256, 102-10	20.5	185
710	Subwavelength-resolution label-free photoacoustic microscopy of optical absorption in vivo. <i>Optics Letters</i> , 2010 , 35, 3195-7	3	185
709	Effects of photoacoustic imaging and photothermal ablation therapy mediated by targeted hollow gold nanospheres in an orthotopic mouse xenograft model of glioma. <i>Cancer Research</i> , 2011 , 71, 6116-	2 ^{†0.1}	183
708	Three-dimensional imaging of skin melanoma in vivo by dual-wavelength photoacoustic microscopy. <i>Journal of Biomedical Optics</i> , 2006 , 11, 34032	3.5	182
707	Continuous-wave ultrasonic modulation of scattered laser light to image objects in turbid media. <i>Optics Letters</i> , 1995 , 20, 629-31	3	179
706	Time-domain reconstruction algorithms and numerical simulations for thermoacoustic tomography in various geometries. <i>IEEE Transactions on Biomedical Engineering</i> , 2003 , 50, 1086-99	5	175
705	Propagation of polarized light in birefringent turbid media: a Monte Carlo study. <i>Journal of Biomedical Optics</i> , 2002 , 7, 279-90	3.5	174
704	Two-dimensional depth-resolved Mueller matrix characterization of biological tissue by optical coherence tomography. <i>Optics Letters</i> , 1999 , 24, 537-9	3	173
703	A real-time photoacoustic tomography system for small animals. <i>Optics Express</i> , 2009 , 17, 10489-98	3.3	170
702	Three-dimensional laser-induced photoacoustic tomography of mouse brain with the skin and skull intact. <i>Optics Letters</i> , 2003 , 28, 1739-41	3	169
701	Photoacoustic endoscopy. Optics Letters, 2009, 34, 1591-3	3	168
700	Analytic explanation of spatial resolution related to bandwidth and detector aperture size in thermoacoustic or photoacoustic reconstruction. <i>Physical Review E</i> , 2003 , 67, 056605	2.4	168
699	Multiscale photoacoustic tomography using reversibly switchable bacterial phytochrome as a near-infrared photochromic probe. <i>Nature Methods</i> , 2016 , 13, 67-73	21.6	165
698	Noninvasive photoacoustic and fluorescence sentinel lymph node identification using dye-loaded perfluorocarbon nanoparticles. <i>ACS Nano</i> , 2011 , 5, 173-82	16.7	164

697	Nanoparticles for photoacoustic imaging. <i>Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology</i> , 2009 , 1, 360-8	9.2	164
696	Noninvasive photoacoustic identification of sentinel lymph nodes containing methylene blue in vivo in a rat model. <i>Journal of Biomedical Optics</i> , 2008 , 13, 054033	3.5	162
695	Single-cell label-free photoacoustic flowoxigraphy in vivo. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2013 , 110, 5759-64	11.5	159
694	Full-wave iterative image reconstruction in photoacoustic tomography with acoustically inhomogeneous media. <i>IEEE Transactions on Medical Imaging</i> , 2013 , 32, 1097-110	11.7	157
693	Imaging of tumor angiogenesis in rat brains in vivo by photoacoustic tomography. <i>Applied Optics</i> , 2005 , 44, 770-5	1.7	152
692	Noninvasive photoacoustic computed tomography of mouse brain metabolism in vivo. <i>NeuroImage</i> , 2013 , 64, 257-66	7.9	151
691	Thermoacoustic and photoacoustic sensing of temperature. <i>Journal of Biomedical Optics</i> , 2009 , 14, 054	103.45	149
690	In vivo photoacoustic imaging of transverse blood flow by using Doppler broadening of bandwidth. <i>Optics Letters</i> , 2010 , 35, 1419-21	3	148
689	Dual-Modality Photoacoustic and Ultrasound Imaging System for Noninvasive Sentinel Lymph Node Detection in Patients with Breast Cancer. <i>Scientific Reports</i> , 2015 , 5, 15748	4.9	147
688	Photoacoustic microscopy and computed tomography: from bench to bedside. <i>Annual Review of Biomedical Engineering</i> , 2014 , 16, 155-85	12	143
687	Deep-tissue photoacoustic tomography of a genetically encoded near-infrared fluorescent probe. <i>Angewandte Chemie - International Edition</i> , 2012 , 51, 1448-51	16.4	143
686	Multiple-bandwidth photoacoustic tomography. <i>Physics in Medicine and Biology</i> , 2004 , 49, 1329-38	3.8	143
685	Time reversal and its application to tomography with diffracting sources. <i>Physical Review Letters</i> , 2004 , 92, 033902	7.4	143
684	In vivo imaging of subcutaneous structures using functional photoacoustic microscopy. <i>Nature Protocols</i> , 2007 , 2, 797-804	18.8	142
683	Ultrasound-mediated biophotonic imaging: a review of acousto-optical tomography and photo-acoustic tomography. <i>Disease Markers</i> , 2003 , 19, 123-38	3.2	142
682	Anisotropy in the absorption and scattering spectra of chicken breast tissue. <i>Applied Optics</i> , 1998 , 37, 798-804	1.7	141
681	Near infrared photoacoustic detection of sentinel lymph nodes with gold nanobeacons. <i>Biomaterials</i> , 2010 , 31, 4088-93	15.6	140
68o	Small-animal whole-body photoacoustic tomography: a review. <i>IEEE Transactions on Biomedical Engineering</i> , 2014 , 61, 1380-9	5	138

(2015-2011)

679	Molecular photoacoustic imaging of angiogenesis with integrin-targeted gold nanobeacons. <i>FASEB Journal</i> , 2011 , 25, 875-82	0.9	138	
678	In vivo label-free photoacoustic microscopy of cell nuclei by excitation of DNA and RNA. <i>Optics Letters</i> , 2010 , 35, 4139-41	3	137	
677	Two-dimensional depth-resolved Mueller matrix of biological tissue measured with double-beam polarization-sensitive optical coherence tomography. <i>Optics Letters</i> , 2002 , 27, 101-3	3	136	
676	Microwave-induced acoustic imaging of biological tissues. <i>Review of Scientific Instruments</i> , 1999 , 70, 37	4 4.3 74	8135	
675	A Green Synthesis of Carbon Nanoparticle from Honey for Real-Time Photoacoustic Imaging. <i>Nano Research</i> , 2013 , 6, 312-325	10	134	
674	VEGF is essential for hypoxia-inducible factor-mediated neovascularization but dispensable for endothelial sprouting. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2011 , 108, 13264-9	11.5	132	
673	Photoacoustic imaging of lacZ gene expression in vivo. <i>Journal of Biomedical Optics</i> , 2007 , 12, 020504	3.5	132	
672	Design and evaluation of a novel breast cancer detection system combining both thermoacoustic (TA) and photoacoustic (PA) tomography. <i>Medical Physics</i> , 2008 , 35, 2218-23	4.4	131	
671	Deep reflection-mode photoacoustic imaging of biological tissue. <i>Journal of Biomedical Optics</i> , 2007 , 12, 060503	3.5	130	
670	Exact frequency-domain reconstruction for thermoacoustic tomographyII: Cylindrical geometry. <i>IEEE Transactions on Medical Imaging</i> , 2002 , 21, 829-33	11.7	130	
669	Mechanisms of ultrasonic modulation of multiply scattered coherent light: an analytic model. <i>Physical Review Letters</i> , 2001 , 87, 043903	7.4	127	
668	Fast label-free multilayered histology-like imaging of human breast cancer by photoacoustic microscopy. <i>Science Advances</i> , 2017 , 3, e1602168	14.3	126	
667	Light backscattering polarization patterns from turbid media: theory and experiment. <i>Applied Optics</i> , 1999 , 38, 3399-408	1.7	125	
666	Single-walled carbon nanotubes as a multimodal-thermoacoustic and photoacoustic-contrast agent. <i>Journal of Biomedical Optics</i> , 2009 , 14, 034018	3.5	123	
665	Jones-matrix imaging of biological tissues with quadruple-channel optical coherence tomography. <i>Journal of Biomedical Optics</i> , 2002 , 7, 350-8	3.5	123	
664	Fast voice-coil scanning optical-resolution photoacoustic microscopy. <i>Optics Letters</i> , 2011 , 36, 139-41	3	122	
663	Photoacoustic tomography: fundamentals, advances and prospects. <i>Contrast Media and Molecular Imaging</i> , 2011 , 6, 332-45	3.2	120	
662	Optical focusing deep inside dynamic scattering media with near-infrared time-reversed ultrasonically encoded (TRUE) light. <i>Nature Communications</i> , 2015 , 6, 5904	17.4	119	

661	Functional transcranial brain imaging by optical-resolution photoacoustic microscopy. <i>Journal of Biomedical Optics</i> , 2009 , 14, 040503	3.5	118
660	Photoacoustic Doppler effect from flowing small light-absorbing particles. <i>Physical Review Letters</i> , 2007 , 99, 184501	7.4	118
659	Monte Carlo simulation of an optical coherence tomography signal in homogeneous turbid media. <i>Physics in Medicine and Biology</i> , 1999 , 44, 2307-20	3.8	118
658	Gold nanocages covered with thermally-responsive polymers for controlled release by high-intensity focused ultrasound. <i>Nanoscale</i> , 2011 , 3, 1724-30	7.7	117
657	Optical Polarization in Biomedical Applications 2006,		115
656	Improved in vivo photoacoustic microscopy based on a virtual-detector concept. <i>Optics Letters</i> , 2006 , 31, 474-6	3	115
655	Electronic structure of small GaAs clusters. <i>Journal of Chemical Physics</i> , 1991 , 94, 8015-8020	3.9	115
654	Use of a laser beam with an oblique angle of incidence to measure the reduced scattering coefficient of a turbid medium. <i>Applied Optics</i> , 1995 , 34, 2362-6	1.7	112
653	Measuring the Optical Absorption Cross-sections of Au-Ag Nanocages and Au Nanorods by Photoacoustic Imaging. <i>Journal of Physical Chemistry C</i> , 2009 , 113, 9023-9028	3.8	111
652	Label-free photoacoustic ophthalmic angiography. <i>Optics Letters</i> , 2010 , 35, 1-3	3	110
651	Whole-body ring-shaped confocal photoacoustic computed tomography of small animals in vivo. <i>Journal of Biomedical Optics</i> , 2012 , 17, 050506	3.5	110
650	Depth-resolved two-dimensional stokes vectors of backscattered light and mueller matrices of biological tissue measured with optical coherence tomography. <i>Applied Optics</i> , 2000 , 39, 6318-24	1.7	109
649	Measurement and calculation of the two-dimensional backscattering Mueller matrix of a turbid medium. <i>Optics Letters</i> , 1998 , 23, 485-7	3	108
648	Handheld array-based photoacoustic probe for guiding needle biopsy of sentinel lymph nodes. <i>Journal of Biomedical Optics</i> , 2010 , 15, 046010	3.5	107
647	Photoacoustic imaging of biological tissue with intensity-modulated continuous-wave laser. <i>Journal of Biomedical Optics</i> , 2008 , 13, 024006	3.5	106
646	Noninvasive in vivo spectroscopic nanorod-contrast photoacoustic mapping of sentinel lymph nodes. <i>European Journal of Radiology</i> , 2009 , 70, 227-31	4.7	105
645	Label-free bond-selective imaging by listening to vibrationally excited molecules. <i>Physical Review Letters</i> , 2011 , 106, 238106	7.4	105
644	Thermoacoustic and photoacoustic tomography of thick biological tissues toward breast imaging. Technology in Cancer Research and Treatment, 2005 , 4, 559-66	2.7	105

(2009-1993)

643	Hybrid model of Monte Carlo simulation and diffusion theory for light reflectance by turbid media. Journal of the Optical Society of America A: Optics and Image Science, and Vision, 1993, 10, 1746-52	1.8	104	
642	Scanning microwave-induced thermoacoustic tomography: signal, resolution, and contrast. <i>Medical Physics</i> , 2001 , 28, 4-10	4.4	103	
641	Compressed sensing in photoacoustic tomography in vivo. <i>Journal of Biomedical Optics</i> , 2010 , 15, 0213	13.5	102	
640	In vivo carbon nanotube-enhanced non-invasive photoacoustic mapping of the sentinel lymph node. <i>Physics in Medicine and Biology</i> , 2009 , 54, 3291-301	3.8	102	
639	A mouse optical simulation environment (MOSE) to investigate bioluminescent phenomena in the living mouse with the Monte Carlo method. <i>Academic Radiology</i> , 2004 , 11, 1029-38	4.3	102	
638	Photoacoustic Brain Imaging: from Microscopic to Macroscopic Scales. <i>Neurophotonics</i> , 2014 , 1,	3.9	101	
637	Measurement of tissue optical properties by the use of oblique-incidence optical fiber reflectometry. <i>Applied Optics</i> , 1997 , 36, 136-43	1.7	100	
636	The influence of boundary conditions on the accuracy of diffusion theory in time-resolved reflectance spectroscopy of biological tissues. <i>Physics in Medicine and Biology</i> , 1995 , 40, 1957-75	3.8	100	
635	Grueneisen relaxation photoacoustic microscopy. <i>Physical Review Letters</i> , 2014 , 113, 174301	7.4	97	
634	In vivo volumetric imaging of subcutaneous microvasculature by photoacoustic microscopy. <i>Optics Express</i> , 2006 , 14, 9317-23	3.3	96	
633	In-vivo photoacoustic microscopy of nanoshell extravasation from solid tumor vasculature. <i>Journal of Biomedical Optics</i> , 2009 , 14, 010507	3.5	95	
632	Real-time photoacoustic tomography of cortical hemodynamics in small animals. <i>Journal of Biomedical Optics</i> , 2010 , 15, 010509	3.5	94	
631	Thermoacoustic tomography with correction for acoustic speed variations. <i>Physics in Medicine and Biology</i> , 2006 , 51, 6437-48	3.8	94	
630	Scanning thermoacoustic tomography in biological tissue. <i>Medical Physics</i> , 2000 , 27, 1195-202	4.4	94	
629	Time-reversed adapted-perturbation (TRAP) optical focusing onto dynamic objects inside scattering media. <i>Nature Photonics</i> , 2014 , 8, 931-936	33.9	93	
628	Graphene-based contrast agents for photoacoustic and thermoacoustic tomography. <i>Photoacoustics</i> , 2013 , 1, 62-67	9	93	
627	Optical drug monitoring: photoacoustic imaging of nanosensors to monitor therapeutic lithium in vivo. <i>ACS Nano</i> , 2015 , 9, 1692-8	16.7	93	
626	Noninvasive label-free imaging of microhemodynamics by optical-resolution photoacoustic microscopy. <i>Optics Express</i> , 2009 , 17, 7688-93	3.3	93	

625	Half-time image reconstruction in thermoacoustic tomography. <i>IEEE Transactions on Medical Imaging</i> , 2005 , 24, 199-210	11.7	93
624	Noninvasive, in vivo imaging of blood-oxygenation dynamics within the mouse brain using photoacoustic microscopy. <i>Journal of Biomedical Optics</i> , 2009 , 14, 020502	3.5	92
623	In vivo photoacoustic microscopy with 7.6-\$\bar{\psi}\$m axial resolution using a commercial 125-MHz ultrasonic transducer. <i>Journal of Biomedical Optics</i> , 2012 , 17, 116016	3.5	92
622	Monte Carlo Modeling of Light Transport in Tissues 1995 , 73-100		92
621	In vivo photoacoustic mapping of lymphatic systems with plasmon-resonant nanostars. <i>Journal of Materials Chemistry</i> , 2011 , 21, 2841-2844		91
620	High-resolution, high-contrast mid-infrared imaging of fresh biological samples with ultraviolet-localized photoacoustic microscopy. <i>Nature Photonics</i> , 2019 , 13, 609-615	33.9	90
619	Wide-field fast-scanning photoacoustic microscopy based on a water-immersible MEMS scanning mirror. <i>Journal of Biomedical Optics</i> , 2012 , 17, 080505-1	3.5	90
618	Near-infrared optical-resolution photoacoustic microscopy. <i>Optics Letters</i> , 2014 , 39, 5192-5195	3	89
617	In vivo integrated photoacoustic and confocal microscopy of hemoglobin oxygen saturation and oxygen partial pressure. <i>Optics Letters</i> , 2011 , 36, 1029-31	3	89
616	Label-free photoacoustic nanoscopy. <i>Journal of Biomedical Optics</i> , 2014 , 19, 086006	3.5	87
615	Focusing light inside dynamic scattering media with millisecond digital optical phase conjugation. <i>Optica</i> , 2017 , 4, 280-288	8.6	86
614	In vivo photoacoustic microscopy of human cutaneous microvasculature and a nevus. <i>Journal of Biomedical Optics</i> , 2011 , 16, 016015	3.5	86
613	Quantitative photoacoustic imaging: correcting for heterogeneous light fluence distributions using diffuse optical tomography. <i>Journal of Biomedical Optics</i> , 2011 , 16, 096016	3.5	85
612	A 2.5-mm diameter probe for photoacoustic and ultrasonic endoscopy. <i>Optics Express</i> , 2012 , 20, 23944-	533.3	85
611	Curved array photoacoustic tomographic system for small animal imaging. <i>Journal of Biomedical Optics</i> , 2008 , 13, 024007	3.5	85
610	Optical-fiber-based Mueller optical coherence tomography. <i>Optics Letters</i> , 2003 , 28, 1206-8	3	85
609	Photoimprint photoacoustic microscopy for three-dimensional label-free subdiffraction imaging. <i>Physical Review Letters</i> , 2014 , 112, 014302	7.4	84
608	Effects of acoustic heterogeneity in breast thermoacoustic tomography. <i>IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control</i> , 2003 , 50, 1134-46	3.2	84

60	97	Photoacoustic tomography of biological tissues with high cross-section resolution: reconstruction and experiment. <i>Medical Physics</i> , 2002 , 29, 2799-805	4.4	84	
60	o6	DNA-PKcs dependence of Artemis endonucleolytic activity, differences between hairpins and 5' or 3' overhangs. <i>Journal of Biological Chemistry</i> , 2006 , 281, 33900-9	5.4	83	
60	05	On the speckle-free nature of photoacoustic tomography. <i>Medical Physics</i> , 2009 , 36, 4084-8	4.4	82	
60	94	Photoacoustic sentinel lymph node imaging with self-assembled copper neodecanoate nanoparticles. <i>ACS Nano</i> , 2012 , 6, 1260-7	16.7	81	
60	03	Molecular photoacoustic tomography with colloidal nanobeacons. <i>Angewandte Chemie - International Edition</i> , 2009 , 48, 4170-3	16.4	80	
60	02	Reflection-mode submicron-resolution in vivo photoacoustic microscopy. <i>Journal of Biomedical Optics</i> , 2012 , 17, 020501	3.5	80	
60	01	Ultralong photonic nanojet formed by a two-layer dielectric microsphere. Optics Letters, 2014, 39, 4120-	-33	79	
60	00	Pulsed-microwave-induced thermoacoustic tomography: filtered backprojection in a circular measurement configuration. <i>Medical Physics</i> , 2002 , 29, 1661-9	4.4	79	
59	99	Labeling human mesenchymal stem cells with gold nanocages for in vitro and in vivo tracking by two-photon microscopy and photoacoustic microscopy. <i>Theranostics</i> , 2013 , 3, 532-43	12.1	78	
59	98	Multifunctional microbubbles and nanobubbles for photoacoustic and ultrasound imaging. <i>Journal of Biomedical Optics</i> , 2010 , 15, 010510	3.5	78	
59	97	In vivo quantitative evaluation of the transport kinetics of gold nanocages in a lymphatic system by noninvasive photoacoustic tomography. <i>ACS Nano</i> , 2011 , 5, 9658-67	16.7	78	
59	96	Three-dimensional combined photoacoustic and optical coherence microscopy for in vivo microcirculation studies. <i>Optics Express</i> , 2009 , 17, 16450-5	3.3	78	
59	95	Photoacoustic tomography through a whole adult human skull with a photon recycler. <i>Journal of Biomedical Optics</i> , 2012 , 17, 110506	3.5	77	
59	94	Multicontrast photoacoustic in vivo imaging using near-infrared fluorescent proteins. <i>Scientific Reports</i> , 2014 , 4, 3939	4.9	76	
59	93	Gold nanocages as contrast agents for photoacoustic imaging. <i>Contrast Media and Molecular Imaging</i> , 2011 , 6, 370-7	3.2	76	
59)2	Effects of wavelength-dependent fluence attenuation on the noninvasive photoacoustic imaging of hemoglobin oxygen saturation in subcutaneous vasculature in vivo. <i>Inverse Problems</i> , 2007 , 23, S113-S12	2 2 .3	74	
59)1	Mechanisms of ultrasonic modulation of multiply scattered coherent light: a Monte Carlo model. <i>Optics Letters</i> , 2001 , 26, 1191-3	3	74	
59	90	Handheld photoacoustic microscopy to detect melanoma depth in vivo. <i>Optics Letters</i> , 2014 , 39, 4731-4	3	73	

589	Performance benchmarks of an array-based hand-held photoacoustic probe adapted from a clinical ultrasound system for non-invasive sentinel lymph node imaging. <i>Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences</i> , 2011 , 369, 4644-50	3	73
588	Ammonia chemisorption on gallium arsenide clusters. <i>Chemical Physics Letters</i> , 1990 , 172, 335-340	2.5	73
587	Intravital imaging of amyloid plaques in a transgenic mouse model using optical-resolution photoacoustic microscopy. <i>Optics Letters</i> , 2009 , 34, 3899-901	3	72
586	Noise-equivalent sensitivity of photoacoustics. <i>Journal of Biomedical Optics</i> , 2013 , 18, 097003	3.5	71
585	Determination of local polarization properties of biological samples in the presence of diattenuation by use of Mueller optical coherence tomography. <i>Optics Letters</i> , 2004 , 29, 2402-4	3	70
584	A review of snapshot multidimensional optical imaging: measuring photon tags in parallel. <i>Physics Reports</i> , 2016 , 616, 1-37	27.7	69
583	Optical-resolution photoacoustic microscopy: auscultation of biological systems at the cellular level. <i>Biophysical Journal</i> , 2013 , 105, 841-7	2.9	69
582	Monkey brain cortex imaging by photoacoustic tomography. <i>Journal of Biomedical Optics</i> , 2008 , 13, 044	009	69
581	Polarized light propagation through scattering media: time-resolved Monte Carlo simulations and experiments. <i>Journal of Biomedical Optics</i> , 2003 , 8, 608-17	3.5	69
580	Ultrasound-modulated optical tomography of biological tissue by use of contrast of laser speckles. <i>Applied Optics</i> , 2002 , 41, 6030-5	1.7	69
579	Label-free automated three-dimensional imaging of whole organs by microtomy-assisted photoacoustic microscopy. <i>Nature Communications</i> , 2017 , 8, 1386	17.4	68
578	Photoacoustic measurement of the Grieisen parameter of tissue. <i>Journal of Biomedical Optics</i> , 2014 , 19, 17007	3.5	68
577	High-resolution ultrasound-modulated optical tomography in biological tissues. <i>Optics Letters</i> , 2004 , 29, 2770-2	3	68
576	Photoacoustic imaging of the microvasculature with a high-frequency ultrasound array transducer. Journal of Biomedical Optics, 2007, 12, 010501	3.5	67
575	Rhesus monkey brain imaging through intact skull with thermoacoustic tomography. <i>IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control</i> , 2006 , 53, 542-8	3.2	67
574	Monte Carlo model and single-scattering approximation of the propagation of polarized light in turbid media containing glucose. <i>Applied Optics</i> , 2002 , 41, 792-801	1.7	67
573	Theoretical and experimental studies of ultrasound-modulated optical tomography in biological tissue. <i>Applied Optics</i> , 2000 , 39, 659-64	1.7	67
57 ²	Conditional HIF-1 induction produces multistage neovascularization with stage-specific sensitivity to VEGFR inhibitors and myeloid cell independence. <i>Blood</i> , 2011 , 117, 4142-53	2.2	66

571	Imaging acute thermal burns by photoacoustic microscopy. Journal of Biomedical Optics, 2006, 11, 0540	33 35	66
570	Limitations of quantitative photoacoustic measurements of blood oxygenation in small vessels. <i>Physics in Medicine and Biology</i> , 2007 , 52, 1349-61	3.8	66
569	Single-shot ultrafast optical imaging. <i>Optica</i> , 2018 , 5, 1113-1127	8.6	66
568	High-resolution deep functional imaging of the whole mouse brain by photoacoustic computed tomography in vivo. <i>Journal of Biophotonics</i> , 2018 , 11, e201700024	3.1	65
567	Enhancement of photoacoustic tomography by ultrasonic computed tomography based on optical excitation of elements of a full-ring transducer array. <i>Optics Letters</i> , 2013 , 38, 3140-3	3	65
566	Label-free photoacoustic microscopy of cytochromes. <i>Journal of Biomedical Optics</i> , 2013 , 18, 20504	3.5	65
565	Frequency-swept ultrasound-modulated optical tomography of scattering media. <i>Optics Letters</i> , 1998 , 23, 975-7	3	65
564	Hybrid-scanning optical-resolution photoacoustic microscopy for in vivo vasculature imaging. <i>Optics Letters</i> , 2010 , 35, 1521-3	3	64
563	Effects of acoustic heterogeneities on transcranial brain imaging with microwave-induced thermoacoustic tomography. <i>Medical Physics</i> , 2008 , 35, 3205-14	4.4	64
562	Photoacoustic microscopy of tyrosinase reporter gene in vivo. <i>Journal of Biomedical Optics</i> , 2011 , 16, 080503	3.5	62
561	Integrated photoacoustic and fluorescence confocal microscopy. <i>IEEE Transactions on Biomedical Engineering</i> , 2010 , 57, 2576-8	5	61
560	The challenge of connecting the dots in the B.R.A.I.N. <i>Neuron</i> , 2013 , 80, 270-4	13.9	60
559	Investigation of neovascularization in three-dimensional porous scaffolds in vivo by a combination of multiscale photoacoustic microscopy and optical coherence tomography. <i>Tissue Engineering - Part C: Methods</i> , 2013 , 19, 196-204	2.9	60
558	Fiber-laser-based photoacoustic microscopy and melanoma cell detection. <i>Journal of Biomedical Optics</i> , 2011 , 16, 011014	3.5	59
557	Optical-resolution photoacoustic endomicroscopy in vivo. <i>Biomedical Optics Express</i> , 2015 , 6, 918-32	3.5	58
556	Contrast mechanisms in polarization-sensitive Mueller-matrix optical coherence tomography and application in burn imaging. <i>Applied Optics</i> , 2003 , 42, 5191-7	1.7	58
555	Single-shot real-time video recording of a photonic Mach cone induced by a scattered light pulse. <i>Science Advances</i> , 2017 , 3, e1601814	14.3	57
554	Single-shot real-time femtosecond imaging of temporal focusing. <i>Light: Science and Applications</i> , 2018 , 7, 42	16.7	57

553	Calibration-free absolute quantification of optical absorption coefficients using acoustic spectra in 3D photoacoustic microscopy of biological tissue. <i>Optics Letters</i> , 2010 , 35, 2067-9	3	57
552	Evans blue dye-enhanced capillary-resolution photoacoustic microscopy in vivo. <i>Journal of Biomedical Optics</i> , 2009 , 14, 054049	3.5	57
551	Neurovascular photoacoustic tomography. Frontiers in Neuroenergetics, 2010 , 2, 10		57
550	Aberration correction for transcranial photoacoustic tomography of primates employing adjunct image data. <i>Journal of Biomedical Optics</i> , 2012 , 17, 066016	3.5	56
549	Ultrasound-modulated optical tomography of absorbing objects buried in dense tissue-simulating turbid media. <i>Applied Optics</i> , 1997 , 36, 7277-82	1.7	56
548	Fast 3-D dark-field reflection-mode photoacoustic microscopy in vivo with a 30-MHz ultrasound linear array. <i>Journal of Biomedical Optics</i> , 2008 , 13, 054028	3.5	56
547	Small near-infrared photochromic protein for photoacoustic multi-contrast imaging and detection of protein interactions in vivo. <i>Nature Communications</i> , 2018 , 9, 2734	17.4	55
546	Photoacoustic tomography of water in phantoms and tissue. <i>Journal of Biomedical Optics</i> , 2010 , 15, 030	60;1 9	55
545	Performance characterization of an integrated ultrasound, photoacoustic, and thermoacoustic imaging system. <i>Journal of Biomedical Optics</i> , 2012 , 17, 056010	3.5	55
544	High-speed dynamic 3D photoacoustic imaging of sentinel lymph node in a murine model using an ultrasound array. <i>Medical Physics</i> , 2009 , 36, 3724-9	4.4	55
543	Ultrasonically encoded photoacoustic flowgraphy in biological tissue. <i>Physical Review Letters</i> , 2013 , 111, 204301	7.4	54
542	Three-dimensional photoacoustic tomography based on the focal-line concept. <i>Journal of Biomedical Optics</i> , 2011 , 16, 090505	3.5	54
541	Realtime photoacoustic microscopy in vivo with a 30-MHz ultrasound array transducer. <i>Optics Express</i> , 2008 , 16, 7915-28	3.3	54
540	Multiview Hilbert transformation for full-view photoacoustic computed tomography using a linear array. <i>Journal of Biomedical Optics</i> , 2015 , 20, 066010	3.5	53
539	In vivo diagnosis of melanoma and nonmelanoma skin cancer using oblique incidence diffuse reflectance spectrometry. <i>Cancer Research</i> , 2012 , 72, 2738-45	10.1	53
538	Absolute photoacoustic thermometry in deep tissue. <i>Optics Letters</i> , 2013 , 38, 5228-5231	3	53
537	Transverse flow imaging based on photoacoustic Doppler bandwidth broadening. <i>Journal of Biomedical Optics</i> , 2010 , 15, 021304	3.5	53
536	In vivo photoacoustic tomography of mouse cerebral edema induced by cold injury. <i>Journal of Biomedical Optics</i> , 2011 , 16, 066020	3.5	53

535	Photoacoustic tomography of monkey brain using virtual point ultrasonic transducers. <i>Journal of Biomedical Optics</i> , 2011 , 16, 076005	3.5	53
534	Pulsed ultrasound-modulated optical tomography using spectral-hole burning as a narrowband spectral filter. <i>Applied Physics Letters</i> , 2008 , 93, 11111	3.4	53
533	Frequency-swept ultrasound-modulated optical tomography in biological tissue by use of parallel detection. <i>Optics Letters</i> , 2000 , 25, 734-6	3	53
532	Motionless volumetric photoacoustic microscopy with spatially invariant resolution. <i>Nature Communications</i> , 2017 , 8, 780	17.4	52
531	In vivo functional photoacoustic microscopy of cutaneous microvasculature in human skin. <i>Journal of Biomedical Optics</i> , 2011 , 16, 026004	3.5	52
530	Photoacoustic computed tomography correcting for heterogeneity and attenuation. <i>Journal of Biomedical Optics</i> , 2012 , 17, 061211	3.5	52
529	Chronic label-free volumetric photoacoustic microscopy of melanoma cells in three-dimensional porous scaffolds. <i>Biomaterials</i> , 2010 , 31, 8651-8	15.6	52
528	Comparison of human skin opto-thermal response to near-infrared and visible laser irradiations: a theoretical investigation. <i>Physics in Medicine and Biology</i> , 2004 , 49, 4861-77	3.8	52
527	On the horizontal-well pumping tests in anisotropic confined aquifers. <i>Journal of Hydrology</i> , 2001 , 252, 37-50	6	52
526	In vivo functional chronic imaging of a small animal model using optical-resolution photoacoustic microscopy. <i>Medical Physics</i> , 2009 , 36, 2320-3	4.4	51
525	Video-rate functional photoacoustic microscopy at depths. <i>Journal of Biomedical Optics</i> , 2012 , 17, 1060	03 .5	51
524	Fully motorized optical-resolution photoacoustic microscopy. <i>Optics Letters</i> , 2014 , 39, 2117-20	3	50
523	Multi-parametric quantitative microvascular imaging with optical-resolution photoacoustic microscopy in vivo. <i>Optics Express</i> , 2014 , 22, 1500-11	3.3	50
522	Tumor glucose metabolism imaged in vivo in small animals with whole-body photoacoustic computed tomography. <i>Journal of Biomedical Optics</i> , 2012 , 17, 076012	3.5	50
521	Degree of polarization in laser speckles from turbid media: implications in tissue optics. <i>Journal of Biomedical Optics</i> , 2002 , 7, 307-12	3.5	50
520	Integrated optical- and acoustic-resolution photoacoustic microscopy based on an optical fiber bundle. <i>Optics Letters</i> , 2013 , 38, 52-54	3	49
519	In vivo imaging of epileptic activity using 2-NBDG, a fluorescent deoxyglucose analog. <i>Journal of Neuroscience Methods</i> , 2012 , 203, 136-40	3	48
518	Dependence of optical scattering from Intralipid in gelatin-gel based tissue-mimicking phantoms on mixing temperature and time. <i>Journal of Biomedical Optics</i> , 2014 , 19, 35002	3.5	48

517	Single-cell photoacoustic thermometry. Journal of Biomedical Optics, 2013, 18, 26003	3.5	48
516	Double-illumination photoacoustic microscopy. <i>Optics Letters</i> , 2012 , 37, 659-61	3	48
515	Compressed-sensing photoacoustic computed tomography in vivo with partially known support. <i>Optics Express</i> , 2012 , 20, 16510	3.3	48
5 ¹ 4	Optimal ultraviolet wavelength for in vivo photoacoustic imaging of cell nuclei. <i>Journal of Biomedical Optics</i> , 2012 , 17, 056004	3.5	47
513	Nonionizing photoacoustic cystography in vivo. <i>Optics Letters</i> , 2011 , 36, 3599-601	3	47
512	In vivo three-dimensional photoacoustic imaging based on a clinical matrix array ultrasound probe. <i>Journal of Biomedical Optics</i> , 2012 , 17, 061208	3.5	47
511	Recent progress in photoacoustic molecular imaging. Current Opinion in Chemical Biology, 2018, 45, 104	-9.1/2	46
510	Photoacoustic Microscopy in Tissue Engineering. <i>Materials Today</i> , 2013 , 16, 67-77	21.8	46
509	alphaVbeta3-targeted copper nanoparticles incorporating an Sn 2 lipase-labile fumagillin prodrug for photoacoustic neovascular imaging and treatment. <i>Theranostics</i> , 2015 , 5, 124-33	12.1	46
508	Photoacoustic microscopy with 2-microm transverse resolution. <i>Journal of Biomedical Optics</i> , 2010 , 15, 021302	3.5	46
507	Detection of ultrasound-modulated diffuse photons using spectral-hole burning. <i>Optics Express</i> , 2008 , 16, 14862-74	3.3	46
506	Skin cancer detection by spectroscopic oblique-incidence reflectometry: classification and physiological origins. <i>Applied Optics</i> , 2004 , 43, 2643-50	1.7	46
505	In vivo label-free photoacoustic flow cytography and on-the-spot laser killing of single circulating melanoma cells. <i>Scientific Reports</i> , 2016 , 6, 39616	4.9	46
504	Multimodal sentinel lymph node mapping with single-photon emission computed tomography (SPECT)/computed tomography (CT) and photoacoustic tomography. <i>Translational Research</i> , 2012 , 159, 175-81	11	45
503	Multifocal optical-resolution photoacoustic microscopy in vivo. <i>Optics Letters</i> , 2011 , 36, 1236-8	3	45
502	Ultrasound-array-based real-time photoacoustic microscopy of human pulsatile dynamics in vivo. <i>Journal of Biomedical Optics</i> , 2010 , 15, 021303	3.5	45
501	Multi-scale molecular photoacoustic tomography of gene expression. <i>PLoS ONE</i> , 2012 , 7, e43999	3.7	45
500	Propagation of polarized light in turbid media: simulated animation sequences. <i>Optics Express</i> , 2000 , 7, 198-203	3.3	45

499	Ultrasonically encoded wavefront shaping for focusing into random media. <i>Scientific Reports</i> , 2014 , 4, 3918	4.9	44
498	Label-free photoacoustic microscopy of peripheral nerves. <i>Journal of Biomedical Optics</i> , 2014 , 19, 16004	1 3.5	44
497	Catheter-based photoacoustic endoscope. <i>Journal of Biomedical Optics</i> , 2014 , 19, 066001	3.5	44
496	Optical clearing-aided photoacoustic microscopy with enhanced resolution and imaging depth. <i>Optics Letters</i> , 2013 , 38, 2592-5	3	44
495	Real-time four-dimensional optical-resolution photoacoustic microscopy with Au nanoparticle-assisted subdiffraction-limit resolution. <i>Optics Letters</i> , 2011 , 36, 1137-9	3	44
494	Multiscale photoacoustic microscopy of single-walled carbon nanotube-incorporated tissue engineering scaffolds. <i>Tissue Engineering - Part C: Methods</i> , 2012 , 18, 310-7	2.9	44
493	Optimum pulse duration and radiant exposure for vascular laser therapy of dark port-wine skin: a theoretical study. <i>Applied Optics</i> , 2003 , 42, 1367-78	1.7	44
492	Special Section Guest Editorial. <i>Journal of Biomedical Optics</i> , 2002 , 7, 278	3.5	44
491	Handheld photoacoustic probe to detect both melanoma depth and volume at high speed in vivo. Journal of Biophotonics, 2015 , 8, 961-967	3.1	43
490	Plasmonics-enhanced and optically modulated delivery of gold nanostars into brain tumor. <i>Nanoscale</i> , 2014 , 6, 4078-82	7.7	43
489	Photoacoustic and optical coherence tomography of epilepsy with high temporal and spatial resolution and dual optical contrasts. <i>Journal of Neuroscience Methods</i> , 2013 , 216, 142-5	3	43
488	Recent advances in colloidal gold nanobeacons for molecular photoacoustic imaging. <i>Contrast Media and Molecular Imaging</i> , 2011 , 6, 378-88	3.2	43
487	Noninvasive photoacoustic microscopy of living cells in two and three dimensions through enhancement by a metabolite dye. <i>Angewandte Chemie - International Edition</i> , 2011 , 50, 7359-63	16.4	43
486	Noninvasive, in vivo imaging of the mouse brain using photoacoustic microscopy. <i>Journal of Applied Physics</i> , 2009 , 105, 102027	2.5	43
485	Photoacoustic microscopy of microvascular responses to cortical electrical stimulation. <i>Journal of Biomedical Optics</i> , 2011 , 16, 076002	3.5	43
484	In vivo superresolution photoacoustic computed tomography by localization of single dyed droplets. <i>Light: Science and Applications</i> , 2019 , 8, 36	16.7	42
483	Effects of light scattering on optical-resolution photoacoustic microscopy. <i>Journal of Biomedical Optics</i> , 2012 , 17, 126014	3.5	42
482	White light oblique incidence reflectometer formeasuring absorption and reduced scatteringspectra of tissue-like turbid media. <i>Optics Express</i> , 1997 , 1, 454-60	3.3	42

481	Simultaneous imaging of a lacZ-marked tumor and microvasculature morphology in vivo by dual-wavelength photoacoustic microscopy. <i>Journal of Innovative Optical Health Sciences</i> , 2008 , 1, 207-2	2752	42
480	Microwave-induced thermoacoustic tomography using multi-sector scanning. <i>Medical Physics</i> , 2001 , 28, 1958-63	4.4	42
479	Improving limited-view photoacoustic tomography with an acoustic reflector. <i>Journal of Biomedical Optics</i> , 2013 , 18, 110505	3.5	41
478	High-throughput, label-free, single-cell photoacoustic microscopy of intratumoral metabolic heterogeneity. <i>Nature Biomedical Engineering</i> , 2019 , 3, 381-391	19	40
477	Handheld optical-resolution photoacoustic microscopy. <i>Journal of Biomedical Optics</i> , 2017 , 22, 41002	3.5	40
476	Noninvasive Determination of Melanoma Depth using a Handheld Photoacoustic Probe. <i>Journal of Investigative Dermatology</i> , 2017 , 137, 1370-1372	4.3	39
475	Focusing light through biological tissue and tissue-mimicking phantoms up to 9.6 cm in thickness with digital optical phase conjugation. <i>Journal of Biomedical Optics</i> , 2016 , 21, 85001	3.5	39
474	Photoacoustic imaging of voltage responses beyond the optical diffusion limit. <i>Scientific Reports</i> , 2017 , 7, 2560	4.9	39
473	A brief account of nanoparticle contrast agents for photoacoustic imaging. <i>Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology</i> , 2013 , 5, 517-43	9.2	39
472	Effects of different imaging models on least-squares image reconstruction accuracy in photoacoustic tomography. <i>IEEE Transactions on Medical Imaging</i> , 2009 , 28, 1781-90	11.7	39
471	Temperature distribution in selective laser-tissue interaction. <i>Journal of Biomedical Optics</i> , 2006 , 11, 34031	3.5	39
470	A born-type approximation method for bioluminescence tomography. <i>Medical Physics</i> , 2006 , 33, 679-86	4.4	39
469	Photoacoustic Doppler flow measurement in optically scattering media. <i>Applied Physics Letters</i> , 2007 , 91, 264103	3.4	39
468	Single-shot ultrafast imaging attaining 70 trillion frames per second. <i>Nature Communications</i> , 2020 , 11, 2091	17.4	38
467	Tangential resolution improvement in thermoacoustic and photoacoustic tomography using a negative acoustic lens. <i>Journal of Biomedical Optics</i> , 2009 , 14, 024028	3.5	38
466	Slow light for deep tissue imaging with ultrasound modulation. <i>Applied Physics Letters</i> , 2012 , 100, 1311	034131	1925
465	Source of error in calculation of optical diffuse reflectance from turbid media using diffusion theory. <i>Computer Methods and Programs in Biomedicine</i> , 2000 , 61, 163-70	6.9	38
464	Space- and intensity-constrained reconstruction for compressed ultrafast photography. <i>Optica</i> , 2016 , 3, 694-697	8.6	38

463	Multiscale Functional and Molecular Photoacoustic Tomography. <i>Ultrasonic Imaging</i> , 2016 , 38, 44-62	1.9	37
462	Focusing light through scattering media by full-polarization digital optical phase conjugation. <i>Optics Letters</i> , 2016 , 41, 1130-3	3	37
461	Calibration-free quantification of absolute oxygen saturation based on the dynamics of photoacoustic signals. <i>Optics Letters</i> , 2013 , 38, 2800-3	3	37
460	In vivo deep brain imaging of rats using oral-cavity illuminated photoacoustic computed tomography. <i>Journal of Biomedical Optics</i> , 2015 , 20, 016019	3.5	36
459	Virus-mimicking nano-constructs as a contrast agent for near infrared photoacoustic imaging. <i>Nanoscale</i> , 2013 , 5, 1772-6	7.7	36
458	Picosecond absorption relaxation measured with nanosecond laser photoacoustics. <i>Applied Physics Letters</i> , 2010 , 97, 163701	3.4	36
457	Universal back-projection algorithm for photoacoustic computed tomography 2005 , 5697, 251		36
456	Ultrasonic modulation of multiply scattered coherent light: an analytical model for anisotropically scattering media. <i>Physical Review E</i> , 2002 , 66, 026603	2.4	36
455	In vivo imaging and characterization of hypoxia-induced neovascularization and tumor invasion. <i>International Journal of Oncology</i> , 2007 , 30, 45-54	1	36
454	Snapshot Photoacoustic Topography Through an Ergodic Relay for High-throughput Imaging of Optical Absorption. <i>Nature Photonics</i> , 2020 , 14, 164-170	33.9	35
453	Label-free photoacoustic tomography of whole mouse brain structures. <i>Neurophotonics</i> , 2016 , 3, 03500	013.9	35
452	Single-exposure optical focusing inside scattering media using binarized time-reversed adapted perturbation. <i>Optica</i> , 2015 , 2, 869-876	8.6	35
451	Photoacoustic tomography imaging and estimation of oxygen saturation of hemoglobin in ocular tissue of rabbits. <i>Experimental Eye Research</i> , 2015 , 138, 153-8	3.7	34
450	Intracellular temperature mapping with fluorescence-assisted photoacoustic-thermometry. <i>Applied Physics Letters</i> , 2013 , 102, 193705	3.4	34
449	Photoacoustic thermography of tissue. <i>Journal of Biomedical Optics</i> , 2014 , 19, 026003	3.5	34
448	In-vivo characterization of optical properties of pigmented skin lesions including melanoma using oblique incidence diffuse reflectance spectrometry. <i>Journal of Biomedical Optics</i> , 2011 , 16, 020501	3.5	34
447	Optimal beam size for light delivery to absorption-enhanced tumors buried in biological tissues and effect of multiple-beam delivery: a Monte Carlo study. <i>Applied Optics</i> , 1997 , 36, 8286-91	1.7	34
446	Fiber-based polarization-sensitive Mueller matrix optical coherence tomography with continuous source polarization modulation. <i>Applied Optics</i> , 2005 , 44, 5463-7	1.7	34

445	Microwave-induced thermoacoustic tomography: reconstruction by synthetic aperture. <i>Medical Physics</i> , 2001 , 28, 2427-31	4.4	34
444	Wide-field two-dimensional multifocal optical-resolution photoacoustic-computed microscopy. <i>Optics Letters</i> , 2013 , 38, 5236-9	3	33
443	Reflection-mode time-reversed ultrasonically encoded optical focusing into turbid media. <i>Journal of Biomedical Optics</i> , 2011 , 16, 080505	3.5	33
442	Correlation transfer and diffusion of ultrasound-modulated multiply scattered light. <i>Physical Review Letters</i> , 2006 , 96, 163902	7.4	33
441	Intense acoustic bursts as a signal-enhancement mechanism in ultrasound-modulated optical tomography. <i>Optics Letters</i> , 2006 , 31, 2423-5	3	33
440	Quantitative photoacoustic microscopy of optical absorption coefficients from acoustic spectra in the optical diffusive regime. <i>Journal of Biomedical Optics</i> , 2012 , 17, 066011	3.5	32
439	A facile synthesis of novel self-assembled gold nanorods designed for near-infrared imaging. Journal of Nanoscience and Nanotechnology, 2010 , 10, 8118-23	1.3	32
438	Absorption distribution of an optical beam focused into a turbid medium. <i>Applied Optics</i> , 1999 , 38, 4951	I -8 7	32
437	Label-free high-throughput detection and quantification of circulating melanoma tumor cell clusters by linear-array-based photoacoustic tomography. <i>Journal of Biomedical Optics</i> , 2017 , 22, 41004	3.5	31
436	Single-wavelength functional photoacoustic microscopy in biological tissue. <i>Optics Letters</i> , 2011 , 36, 769-71	3	31
435	In vivo optical-resolution photoacoustic computed tomography with compressed sensing. <i>Optics Letters</i> , 2012 , 37, 4573-5	3	31
434	Imaging optically scattering objects with ultrasound-modulated optical tomography. <i>Optics Letters</i> , 2007 , 32, 2351-3	3	31
433	Modulation of multiply scattered coherent light by ultrasonic pulses: an analytical model. <i>Physical Review E</i> , 2005 , 72, 036620	2.4	31
432	A Facile and General Method for the Encapsulation of Different Types of Imaging Contrast Agents Within Micrometer-Sized Polymer Beads. <i>Advanced Functional Materials</i> , 2012 , 22, 764-770	15.6	30
431	Integrated photoacoustic, confocal, and two-photon microscope. <i>Journal of Biomedical Optics</i> , 2014 , 19, 36002	3.5	30
430	Calibration-free in vivo transverse blood flowmetry based on cross correlation of slow time profiles from photoacoustic microscopy. <i>Optics Letters</i> , 2013 , 38, 3882-5	3	30
429	Functional photoacoustic microscopy of diabetic vasculature. <i>Journal of Biomedical Optics</i> , 2012 , 17, 060	Ͻ <u></u> ≨. <u>@</u> 2	30
428	Image distortion in thermoacoustic tomography caused by microwave diffraction. <i>Physical Review E</i> , 2008 , 77, 031923	2.4	30

427	Optimized radial and angular positions in Monte Carlo modeling. <i>Medical Physics</i> , 1994 , 21, 1081-3	4.4	30
426	Three-dimensional photoacoustic endoscopic imaging of the rabbit esophagus. <i>PLoS ONE</i> , 2015 , 10, e0	130,269	9 30
425	Photoacoustic elastography. Optics Letters, 2016, 41, 725-8	3	29
424	Non-invasive and in situ characterization of the degradation of biomaterial scaffolds by volumetric photoacoustic microscopy. <i>Angewandte Chemie - International Edition</i> , 2014 , 53, 184-8	16.4	29
423	Encrypted Three-dimensional Dynamic Imaging using Snapshot Time-of-flight Compressed Ultrafast Photography. <i>Scientific Reports</i> , 2015 , 5, 15504	4.9	29
422	Detection, mapping, and quantification of single walled carbon nanotubes in histological specimens with photoacoustic microscopy. <i>PLoS ONE</i> , 2012 , 7, e35064	3.7	29
421	Photoacoustic tomography of foreign bodies in soft biological tissue. <i>Journal of Biomedical Optics</i> , 2011 , 16, 046017	3.5	29
420	Label-free photoacoustic microscopy of myocardial sheet architecture. <i>Journal of Biomedical Optics</i> , 2012 , 17, 060506	3.5	29
419	M-mode photoacoustic particle flow imaging. <i>Optics Letters</i> , 2009 , 34, 671-3	3	29
418	Immediate alterations in intestinal oxygen saturation and blood flow after massive small bowel resection as measured by photoacoustic microscopy. <i>Journal of Pediatric Surgery</i> , 2012 , 47, 1143-9	2.6	28
417	Section-illumination photoacoustic microscopy for dynamic 3D imaging of microcirculation in vivo. <i>Optics Letters</i> , 2010 , 35, 1482-4	3	28
416	In vivo photoacoustic tomography of total blood flow and potential imaging of cancer angiogenesis and hypermetabolism. <i>Technology in Cancer Research and Treatment</i> , 2012 , 11, 301-7	2.7	28
415	High-numerical-aperture-based virtual point detectors for photoacoustic tomography. <i>Applied Physics Letters</i> , 2008 , 93, 33902	3.4	28
414	Bessel-beam Grueneisen relaxation photoacoustic microscopy with extended depth of field. <i>Journal of Biomedical Optics</i> , 2015 , 20, 116002	3.5	27
413	Noninvasive photoacoustic imaging of the thoracic cavity and the kidney in small and large animals. <i>Medical Physics</i> , 2008 , 35, 4524-9	4.4	27
412	Urogenital photoacoustic endoscope. <i>Optics Letters</i> , 2014 , 39, 1473-1476	3	26
411	Multi-view optical resolution photoacoustic microscopy. <i>Optica</i> , 2014 , 1, 217-222	8.6	26
410	Retrospective respiration-gated whole-body photoacoustic computed tomography of mice. <i>Journal of Biomedical Optics</i> , 2014 , 19, 16003	3.5	26

409	Focused fluorescence excitation with time-reversed ultrasonically encoded light and imaging in thick scattering media. <i>Laser Physics Letters</i> , 2013 , 10, 075604	1.5	26
408	Saturation effect in functional photoacoustic imaging. <i>Journal of Biomedical Optics</i> , 2010 , 15, 021317	3.5	26
407	FEster resonance energy transfer photoacoustic microscopy. <i>Journal of Biomedical Optics</i> , 2012 , 17, 086007	3.5	26
406	Photoacoustic microscopy of blood pulse wave. <i>Journal of Biomedical Optics</i> , 2012 , 17, 070504	3.5	26
405	Negative lens concept for photoacoustic tomography. <i>Physical Review E</i> , 2008 , 78, 021901	2.4	26
404	Photorefractive detection of tissue optical and mechanical properties by ultrasound modulated optical tomography. <i>Optics Letters</i> , 2007 , 32, 656-8	3	26
403	In vivo three-dimensional photoacoustic tomography of a whole mouse head. <i>Optics Letters</i> , 2006 , 31, 2453-5	3	26
402	Methods for parallel-detection-based ultrasound-modulated optical tomography. <i>Applied Optics</i> , 2002 , 41, 2079-84	1.7	26
401	Rapid modeling of diffuse reflectance of light in turbid slabs. <i>Journal of the Optical Society of America A: Optics and Image Science, and Vision</i> , 1998 , 15, 936-44	1.8	26
400	Bit-efficient, sub-millisecond wavefront measurement using a lock-in camera for time-reversal based optical focusing inside scattering media. <i>Optics Letters</i> , 2016 , 41, 1321-4	3	25
399	Quantitative analysis of the fate of gold nanocages in vitro and in vivo after uptake by U87-MG tumor cells. <i>Angewandte Chemie - International Edition</i> , 2013 , 52, 1152-5	16.4	25
398	Focusing light through scattering media by polarization modulation based generalized digital optical phase conjugation. <i>Applied Physics Letters</i> , 2017 , 111, 201108	3.4	25
397	Random-access optical-resolution photoacoustic microscopy using a digital micromirror device. <i>Optics Letters</i> , 2013 , 38, 2683-6	3	25
396	Functional photoacoustic microscopy of pH. <i>Journal of Biomedical Optics</i> , 2011 , 16, 100503	3.5	25
395	Adaptive and robust methods of reconstruction (ARMOR) for thermoacoustic tomography. <i>IEEE Transactions on Biomedical Engineering</i> , 2008 , 55, 2741-52	5	25
394	Boundary conditions in photoacoustic tomography and image reconstruction. <i>Journal of Biomedical Optics</i> , 2007 , 12, 014027	3.5	25
393	Polarized light transmission through skin using video reflectometry: toward optical tomography of superficial tissue layers 1996 , 2671, 199		25
392	A Constrained Variable Projection Reconstruction Method for Photoacoustic Computed Tomography Without Accurate Knowledge of Transducer Responses. <i>IEEE Transactions on Medical Imaging</i> , 2015 , 34, 2443-58	11.7	24

391	Microvascular quantification based on contour-scanning photoacoustic microscopy. <i>Journal of Biomedical Optics</i> , 2014 , 19, 96011	3.5	24
390	Photoacoustic microscopy of bilirubin in tissue phantoms. <i>Journal of Biomedical Optics</i> , 2012 , 17, 12601	9 3.5	24
389	Time-reversed ultrasonically encoded optical focusing in biological tissue. <i>Journal of Biomedical Optics</i> , 2012 , 17, 030506	3.5	24
388	Photoacoustic computed tomography of human extremities. <i>Journal of Biomedical Optics</i> , 2019 , 24, 1-8	3.5	24
387	Angular-spectrum modeling of focusing light inside scattering media by optical phase conjugation. <i>Optica</i> , 2019 , 6, 250-256	8.6	24
386	Rapid synthesis of near infrared polymeric micelles for real-time sentinel lymph node imaging. <i>Advanced Healthcare Materials</i> , 2012 , 1, 582-9	10.1	23
385	Photoacoustic tomography of small animal brain with a curved array transducer. <i>Journal of Biomedical Optics</i> , 2009 , 14, 054007	3.5	23
384	Ultrasound-modulated optical computed tomography of biological tissues. <i>Applied Physics Letters</i> , 2004 , 84, 1597-1599	3.4	23
383	Propagation of polarized light in birefringent turbid media: time-resolved simulations. <i>Optics Express</i> , 2001 , 9, 254-9	3.3	23
382	Particle sizing in concentrated suspensions by use of steady-state, continuous-wave photon-migration techniques. <i>Optics Letters</i> , 1998 , 23, 394-6	3	23
381	Single-shot compressed ultrafast photography: a review. Advanced Photonics, 2020, 2, 1	8.1	23
380	Parameterized joint reconstruction of the initial pressure and sound speed distributions for photoacoustic computed tomography. <i>SIAM Journal on Imaging Sciences</i> , 2018 , 11, 1560-1588	1.9	22
379	Amplitude-masked photoacoustic wavefront shaping and application in flowmetry. <i>Optics Letters</i> , 2014 , 39, 5499-502	3	22
378	Photoacoustic lymphatic imaging with high spatial-temporal resolution. <i>Journal of Biomedical Optics</i> , 2014 , 19, 116009	3.5	22
377	Fast and robust deconvolution-based image reconstruction for photoacoustic tomography in circular geometry: experimental validation. <i>IEEE Photonics Journal</i> , 2010 , 2, 57-66	1.8	22
376	Ultrasound-modulated optical tomography with intense acoustic bursts. <i>Applied Optics</i> , 2007 , 46, 1615-	-2B ₇	22
375	Ultrasonic-heating-encoded photoacoustic tomography with virtually augmented detection view. <i>Optica</i> , 2015 , 2, 307-312	8.6	21
374	Nonlinear photoacoustic spectroscopy of hemoglobin. <i>Applied Physics Letters</i> , 2015 , 106, 203701	3.4	21

373	Multiview Hilbert transformation in full-ring transducer array-based photoacoustic computed tomography. <i>Journal of Biomedical Optics</i> , 2017 , 22, 76017	3.5	21
372	Massively parallel functional photoacoustic computed tomography of the human brain. <i>Nature Biomedical Engineering</i> , 2021 ,	19	21
371	High-speed photoacoustic microscopy of mouse cortical microhemodynamics. <i>Journal of Biophotonics</i> , 2017 , 10, 792-798	3.1	20
370	In vivo label-free functional photoacoustic monitoring of ischemic reperfusion. <i>Journal of Biophotonics</i> , 2019 , 12, e201800454	3.1	20
369	Joint Reconstruction of Absorbed Optical Energy Density and Sound Speed Distributions in Photoacoustic Computed Tomography: A Numerical Investigation. <i>IEEE Transactions on Computational Imaging</i> , 2016 , 2, 136-149	4.5	20
368	Reflection-mode multifocal optical-resolution photoacoustic microscopy. <i>Journal of Biomedical Optics</i> , 2013 , 18, 030501	3.5	20
367	Cross-correlation-based transverse flow measurements using optical resolution photoacoustic microscopy with a digital micromirror device. <i>Journal of Biomedical Optics</i> , 2013 , 18, 096004	3.5	20
366	Time-reversed ultrasonically encoded optical focusing into tissue-mimicking media with thickness up to 70 mean free paths. <i>Journal of Biomedical Optics</i> , 2011 , 16, 086009	3.5	20
365	In vivo burn imaging using Mueller optical coherence tomography. <i>Optics Express</i> , 2008 , 16, 10279-84	3.3	20
364	Weighted expectation maximization reconstruction algorithms for thermoacoustic tomography. <i>IEEE Transactions on Medical Imaging</i> , 2005 , 24, 817-20	11.7	20
363	Signal processing in scanning thermoacoustic tomography in biological tissues. <i>Medical Physics</i> , 2001 , 28, 1519-24	4.4	20
362	Dual-view photoacoustic microscopy for quantitative cell nuclear imaging. <i>Optics Letters</i> , 2018 , 43, 487.	5- 3 1878	20
361	In vivo photoacoustic microscopy of human cuticle microvasculature with single-cell resolution. Journal of Biomedical Optics, 2016 , 21, 56004	3.5	20
360	Optimizing codes for compressed ultrafast photography by the genetic algorithm. <i>Optica</i> , 2018 , 5, 147	8.6	19
359	A forward-adjoint operator pair based on the elastic wave equation for use in transcranial photoacoustic computed tomography. <i>SIAM Journal on Imaging Sciences</i> , 2017 , 10, 2022-2048	1.9	19
358	Sub-Nyquist sampling boosts targeted light transport through opaque scattering media. <i>Optica</i> , 2017 , 4, 97-102	8.6	19
357	In vivo photoacoustic tomography of myoglobin oxygen saturation. <i>Journal of Biomedical Optics</i> , 2016 , 21, 61002	3.5	19
356	Continuous scanning of a time-reversed ultrasonically encoded optical focus by reflection-mode digital phase conjugation. <i>Optics Letters</i> , 2014 , 39, 3441-4	3	19

355	Calibration-free absolute quantification of particle concentration by statistical analyses of photoacoustic signals in vivo. <i>Journal of Biomedical Optics</i> , 2014 , 19, 37001	3.5	19	
354	Automatic algorithm for skin profile detection in photoacoustic microscopy. <i>Journal of Biomedical Optics</i> , 2009 , 14, 024050	3.5	19	
353	Multi-optical-wavelength ultrasound-modulated optical tomography: a phantom study. <i>Optics Letters</i> , 2007 , 32, 2285-7	3	19	
352	High-speed three-dimensional photoacoustic computed tomography for preclinical research and clinical translation. <i>Nature Communications</i> , 2021 , 12, 882	17.4	19	
351	Real-time frequency-encoded spatiotemporal focusing through scattering media using a programmable 2D ultrafine optical frequency comb. <i>Science Advances</i> , 2020 , 6, eaay1192	14.3	18	
350	Label-free cell nuclear imaging by GrBeisen relaxation photoacoustic microscopy. <i>Optics Letters</i> , 2018 , 43, 947-950	3	18	
349	Spatially Fourier-encoded photoacoustic microscopy using a digital micromirror device. <i>Optics Letters</i> , 2014 , 39, 430-3	3	18	
348	Ultrasound-modulated optical tomography at new depth. <i>Journal of Biomedical Optics</i> , 2012 , 17, 06600	63.5	18	
347	A 3-D high-frequency array based 16 channel photoacoustic microscopy system for in vivo micro-vascular imaging. <i>IEEE Transactions on Medical Imaging</i> , 2009 , 28, 1190-7	11.7	18	
346	Dependence of photoacoustic speckles on boundary roughness. <i>Journal of Biomedical Optics</i> , 2012 , 17, 046009	3.5	18	
345	Optical fluence distribution study in tissue in dark-field confocal photoacoustic microscopy using a modified Monte Carlo convolution method. <i>Applied Optics</i> , 2009 , 48, 3204-11	0.2	18	
344	Ultrasonic Modulation of Scattered Light in Turbid Media and a Potential Novel Tomography in Biomedicine. <i>Photochemistry and Photobiology</i> , 1998 , 67, 41-49	3.6	18	
343	Stochastic explanation of speckle contrast detection in ultrasound-modulated optical tomography. <i>Physical Review E</i> , 2006 , 73, 061920	2.4	18	
342	Formulation of photon diffusion from spherical bioluminescent sources in an infinite homogeneous medium. <i>BioMedical Engineering OnLine</i> , 2004 , 3, 12	4.1	18	
341	Sonoluminescent tomography of strongly scattering media. <i>Optics Letters</i> , 1998 , 23, 561-3	3	18	
340	Error estimation of measuring total interaction coefficients of turbid media using collimated light transmission. <i>Physics in Medicine and Biology</i> , 1994 , 39, 2349-54	3.8	18	
339	Transvaginal fast-scanning optical-resolution photoacoustic endoscopy. <i>Journal of Biomedical Optics</i> , 2018 , 23, 1-4	3.5	18	
338	Lock-in camera based heterodyne holography for ultrasound-modulated optical tomography inside dynamic scattering media. <i>Applied Physics Letters</i> , 2016 , 108, 231106	3.4	18	

337	Suppressing excitation effects in microwave induced thermoacoustic tomography by multi-view Hilbert transformation. <i>Applied Physics Letters</i> , 2017 , 110, 053701	3.4	17
336	Mitigation of artifacts due to isolated acoustic heterogeneities in photoacoustic computed tomography using a variable data truncation-based reconstruction method. <i>Journal of Biomedical Optics</i> , 2017 , 22, 41018	3.5	17
335	Fast spatiotemporal image reconstruction based on low-rank matrix estimation for dynamic photoacoustic computed tomography. <i>Journal of Biomedical Optics</i> , 2014 , 19, 056007	3.5	17
334	Ultrasound-heated photoacoustic flowmetry. <i>Journal of Biomedical Optics</i> , 2013 , 18, 117003	3.5	17
333	Noninvasive Photoacoustic Microscopy of Living Cells in Two and Three Dimensions through Enhancement by a Metabolite Dye. <i>Angewandte Chemie</i> , 2011 , 123, 7497-7501	3.6	17
332	Photoacoustic tomography of the mouse cerebral cortex with a high-numerical-aperture-based virtual point detector. <i>Journal of Biomedical Optics</i> , 2009 , 14, 024047	3.5	17
331	Numerical investigation of the effects of shear waves in transcranial photoacoustic tomography with a planar geometry. <i>Journal of Biomedical Optics</i> , 2012 , 17, 061215	3.5	17
330	Ring-based ultrasonic virtual point detector with applications to photoacoustic tomography. <i>Applied Physics Letters</i> , 2007 , 90, 251103	3.4	17
329	Synchronous self-elimination of autocorrelation interference in Fourier-domain optical coherence tomography. <i>Optics Letters</i> , 2005 , 30, 2939-41	3	17
328	Correlation transfer equation for ultrasound-modulated multiply scattered light. <i>Physical Review E</i> , 2006 , 74, 036618	2.4	17
327	Effect of molecular concentrations in tissu-simulating phantoms on images obtained using diffuse reflectance polarimetry. <i>Optics Express</i> , 1998 , 3, 286-97	3.3	17
326	High-throughput ultraviolet photoacoustic microscopy with multifocal excitation. <i>Journal of Biomedical Optics</i> , 2018 , 23, 1-6	3.5	17
325	Physical picture of the optical memory effect. <i>Photonics Research</i> , 2019 , 7, 1323	6	17
324	Slow-sound photoacoustic microscopy. <i>Applied Physics Letters</i> , 2013 , 102, 163702	3.4	16
323	Optical-resolution photoacoustic microscopy for volumetric and spectral analysis of histological and immunochemical samples. <i>Angewandte Chemie - International Edition</i> , 2014 , 53, 8099-103	16.4	16
322	Gold nanocages for cancer imaging and therapy. <i>Methods in Molecular Biology</i> , 2010 , 624, 83-99	1.4	16
321	Energy enhancement in time-reversed ultrasonically encoded optical focusing using a photorefractive polymer. <i>Journal of Biomedical Optics</i> , 2012 , 17, 080507-1	3.5	16
320	Skin lesion classification using oblique-incidence diffuse reflectance spectroscopic imaging. <i>Applied Optics</i> , 2002 , 41, 182-92	1.7	16

(2006-2015)

319	Photoacoustic tomography of vascular compliance in humans. <i>Journal of Biomedical Optics</i> , 2015 , 20, 126008	3.5	15	
318	Handheld photoacoustic tomography probe built using optical-fiber parallel acoustic delay lines. Journal of Biomedical Optics, 2014 , 19, 086007	3.5	15	
317	High-sensitivity ultrasound-modulated optical tomography with a photorefractive polymer. <i>Optics Letters</i> , 2013 , 38, 899-901	3	15	
316	Transcranial thermoacoustic tomography: a comparison of two imaging algorithms. <i>IEEE Transactions on Medical Imaging</i> , 2013 , 32, 289-94	11.7	15	
315	Ultrasound-modulated optical microscopy. <i>Journal of Biomedical Optics</i> , 2008 , 13, 054046	3.5	15	
314	Correlation transfer equation for multiply scattered light modulated by an ultrasonic pulse. <i>Journal of the Optical Society of America A: Optics and Image Science, and Vision</i> , 2007 , 24, 2797-806	1.8	15	
313	Direct measurement of hypoxia in a xenograft multiple myeloma model by optical-resolution photoacoustic microscopy. <i>Cancer Biology and Therapy</i> , 2017 , 18, 101-105	4.6	14	
312	Spatiotemporal Antialiasing in Photoacoustic Computed Tomography. <i>IEEE Transactions on Medical Imaging</i> , 2020 , 39, 3535-3547	11.7	14	
311	Hybridized wavefront shaping for high-speed, high-efficiency focusing through dynamic diffusive media. <i>Journal of Biomedical Optics</i> , 2016 , 21, 121502	3.5	14	
310	Quantitative photoacoustic elastography in humans. <i>Journal of Biomedical Optics</i> , 2016 , 21, 66011	3.5	14	
309	Dichroism-sensitive photoacoustic computed tomography. <i>Optica</i> , 2018 , 5, 495-501	8.6	14	
308	Homogenizing microwave illumination in thermoacoustic tomography by a linear-to-circular polarizer based on frequency selective surfaces. <i>Applied Physics Letters</i> , 2017 , 111, 063703	3.4	14	
307	In vivo optically encoded photoacoustic flowgraphy. <i>Optics Letters</i> , 2014 , 39, 3814-7	3	14	
306	Microcirculatory changes identified by photoacoustic microscopy in patients with complex regional pain syndrome type I after stellate ganglion blocks. <i>Journal of Biomedical Optics</i> , 2014 , 19, 086017	3.5	14	
305	Optical-resolution photoacoustic microscopy of ischemic stroke 2011 ,		14	
304	Seeing it through: translational validation of new medical imaging modalities. <i>Biomedical Optics Express</i> , 2012 , 3, 764-76	3.5	14	
303	Spectrally encoded photoacoustic microscopy using a digital mirror device. <i>Journal of Biomedical Optics</i> , 2012 , 17, 066020	3.5	14	
302	Spectral-domain optical coherence tomography: Removal of autocorrelation using an optical switch. <i>Applied Physics Letters</i> , 2006 , 88, 111115	3.4	14	

301	Single-shot stereo-polarimetric compressed ultrafast photography for light-speed observation of high-dimensional optical transients with picosecond resolution. <i>Nature Communications</i> , 2020 , 11, 5252	17.4	14
300	Focusing light inside live tissue using reversibly switchable bacterial phytochrome as a genetically encoded photochromic guide star. <i>Science Advances</i> , 2019 , 5, eaay1211	14.3	14
299	Synthetic Bessel light needle for extended depth-of-field microscopy. <i>Applied Physics Letters</i> , 2018 , 113, 181104	3.4	14
298	Picosecond-resolution phase-sensitive imaging of transparent objects in a single shot. <i>Science Advances</i> , 2020 , 6, eaay6200	14.3	13
297	A water-immersible 2-axis scanning mirror microsystem for ultrasound andha photoacoustic microscopic imaging applications. <i>Microsystem Technologies</i> , 2013 , 19, 577-582	1.7	13
296	Parallel acoustic delay lines for photoacoustic tomography. <i>Journal of Biomedical Optics</i> , 2012 , 17, 1160) 1 ,9 5	13
295	Imaging of high-intensity focused ultrasound-induced lesions in soft biological tissue using thermoacoustic tomography. <i>Medical Physics</i> , 2005 , 32, 5-11	4.4	13
294	Two-dimensional imaging of dense tissue-simulating turbid media by use of sonoluminescence. <i>Applied Optics</i> , 1999 , 38, 246-52	1.7	13
293	High-speed, sparse-sampling three-dimensional photoacoustic computed tomography in vivo based on principal component analysis. <i>Journal of Biomedical Optics</i> , 2016 , 21, 76007	3.5	13
292	Compressed ultrafast photography by multi-encoding imaging. <i>Laser Physics Letters</i> , 2018 , 15, 116202	1.5	13
291	Comparative Effects of Linearly and Circularly Polarized Illumination on Microwave-Induced Thermoacoustic Tomography. <i>IEEE Antennas and Wireless Propagation Letters</i> , 2017 , 16, 1593-1596	3.8	12
290	Spatio-temporal-spectral imaging of non-repeatable dissipative soliton dynamics. <i>Nature Communications</i> , 2020 , 11, 2059	17.4	12
289	Correcting the limited view in optical-resolution photoacoustic microscopy. <i>Journal of Biophotonics</i> , 2018 , 11, e201700196	3.1	12
288	Deep-tissue photoacoustic tomography of FEster resonance energy transfer. <i>Journal of Biomedical Optics</i> , 2013 , 18, 101316	3.5	12
287	Structured-illumination photoacoustic Doppler flowmetry of axial flow in homogeneous scattering media. <i>Applied Physics Letters</i> , 2013 , 103, 94101	3.4	12
286	Wave of single-impulse-stimulated fast initial dip in single vessels of mouse brains imaged by high-speed functional photoacoustic microscopy. <i>Journal of Biomedical Optics</i> , 2020 , 25, 1-11	3.5	12
285	Harnessing a multi-dimensional fibre laser using genetic wavefront shaping. <i>Light: Science and Applications</i> , 2020 , 9, 149	16.7	12
284	Dry coupling for whole-body small-animal photoacoustic computed tomography. <i>Journal of Biomedical Optics</i> , 2017 , 22, 41017	3.5	11

(2007-2015)

283	Noninvasive photoacoustic microscopy of methemoglobin in vivo. <i>Journal of Biomedical Optics</i> , 2015 , 20, 036007	3.5	11
282	Transparent High-Frequency Ultrasonic Transducer for Photoacoustic Microscopy Application. <i>IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control,</i> 2020 , 67, 1848-1853	3.2	11
281	Grueneisen relaxation photoacoustic microscopy in vivo. Journal of Biomedical Optics, 2016, 21, 66005	3.5	11
280	Photothermal bleaching in time-lapse photoacoustic microscopy. <i>Journal of Biophotonics</i> , 2013 , 6, 543-8	33.1	11
279	Three-dimensional optical-resolution photoacoustic microscopy. <i>Journal of Visualized Experiments</i> , 2011 ,	1.6	11
278	Micromachined Fiber Optical Sensor for In Vivo Measurement of Optical Properties of Human Skin. <i>IEEE Sensors Journal</i> , 2008 , 8, 1698-1703	4	11
277	Optical phantoms for ultrasound-modulated optical tomography 2008,		11
276	Technical considerations in quantitative blood oxygenation measurement using photoacoustic microscopy in vivo 2006 , 6086, 215		11
275	Optical-thermal simulation of tonsillar tissue irradiation. <i>Lasers in Surgery and Medicine</i> , 2001 , 28, 313-9	3.6	11
274	Measurement and calculation of the two-dimensional backscattering Mueller matrix of a turbid medium: errata. <i>Optics Letters</i> , 1998 , 23, 1630	3	11
273	Biological laser action. <i>Applied Optics</i> , 1996 , 35, 1775-9	1.7	11
272	Frontiers in Biophotonics for Translational Medicine. <i>Progress in Optical Science and Photonics</i> , 2016	0.3	11
271	Multifocal photoacoustic microscopy using a single-element ultrasonic transducer through an ergodic relay. <i>Light: Science and Applications</i> , 2020 , 9, 135	16.7	11
270	Microwave-induced thermoacoustic tomography through an adult human skull. <i>Medical Physics</i> , 2019 , 46, 1793-1797	4.4	11
269	Iterative image reconstruction in transcranial photoacoustic tomography based on the elastic wave equation. <i>Physics in Medicine and Biology</i> , 2020 , 65, 055009	3.8	10
268	Use of a single xenon flash lamp for photoacoustic computed tomography of multiple-centimeter-thick biological tissue ex vivo and a whole mouse body in vivo. <i>Journal of Biomedical Optics</i> , 2017 , 22, 41003	3.5	10
267	Seeing Through the Surface: Non-invasive Characterization of Biomaterial-Tissue Interactions Using Photoacoustic Microscopy. <i>Annals of Biomedical Engineering</i> , 2016 , 44, 649-66	4.7	10
266	Multiple-source optical diffusion approximation for a multilayer scattering medium. <i>Applied Optics</i> , 2007 , 46, 6004-9	1.7	10

265	Photoacoustic topography through an ergodic relay for functional imaging and biometric application in vivo. <i>Journal of Biomedical Optics</i> , 2020 , 25, 1-8	3.5	10
264	Tripling the detection view of high-frequency linear-array-based photoacoustic computed tomography by using two planar acoustic reflectors. <i>Quantitative Imaging in Medicine and Surgery</i> , 2015 , 5, 57-62	3.6	10
263	Transcranial photoacoustic computed tomography based on a layered back-projection method. <i>Photoacoustics</i> , 2020 , 20, 100213	9	9
262	Fabrication of Cell Patches Using Biodegradable Scaffolds with a Hexagonal Array of Interconnected Pores (SHAIPs). <i>Polymer</i> , 2014 , 55, 445-452	3.9	9
261	Deep-Tissue Photoacoustic Tomography of a Genetically Encoded Near-Infrared Fluorescent Probe. <i>Angewandte Chemie</i> , 2012 , 124, 1477-1480	3.6	9
260	Time-reversed ultrasonically encoded optical focusing using two ultrasonic transducers for improved ultrasonic axial resolution. <i>Journal of Biomedical Optics</i> , 2013 , 18, 110502	3.5	9
259	Ex vivo blood vessel imaging using ultrasound-modulated optical microscopy. <i>Journal of Biomedical Optics</i> , 2009 , 14, 014015	3.5	9
258	Noninvasive functional photoacoustic tomography of blood-oxygen saturation in the brain 2004 , 5320, 69		9
257	Transmission- and side-detection configurations in ultrasound-modulated optical tomography of thick biological tissues. <i>Applied Optics</i> , 2003 , 42, 4088-94	1.7	9
256	Signal dependence and noise source in ultrasound-modulated optical tomography. <i>Applied Optics</i> , 2004 , 43, 1320-6	1.7	9
255	Label-free high-throughput photoacoustic tomography of suspected circulating melanoma tumor cells in patients in vivo. <i>Journal of Biomedical Optics</i> , 2020 , 25, 1-17	3.5	9
254	Photo acoustic tomography. <i>Scholarpedia Journal</i> , 2014 , 9, 10278	1.5	9
253	Three-dimensional arbitrary trajectory scanning photoacoustic microscopy. <i>Journal of Biophotonics</i> , 2015 , 8, 303-8	3.1	8
252	Nonlinear light-sheet fluorescence microscopy by photobleaching imprinting. <i>Journal of the Royal Society Interface</i> , 2014 , 11, 20130851	4.1	8
251	Analysis of the potential for non-invasive imaging of oxygenation at heart depth, using ultrasound optical tomography (UOT) or photo-acoustic tomography (PAT). <i>Biomedical Optics Express</i> , 2017 , 8, 452.	3 ³ 4536	5 8
250	Reversibly switchable fluorescence microscopy with enhanced resolution and image contrast. <i>Journal of Biomedical Optics</i> , 2014 , 19, 086018	3.5	8
249	Spectral hole burning for ultrasound-modulated optical tomography of thick tissue. <i>Journal of Biomedical Optics</i> , 2010 , 15, 066018	3.5	8
248	Optical-resolution photoacoustic microscopy of angiogenesis in a transgenic mouse model 2010 ,		8

247	Optical-resolution confocal photoacoustic microscopy 2008,		8
246	Sentinel lymph node detection ex vivo using ultrasound-modulated optical tomography. <i>Journal of Biomedical Optics</i> , 2008 , 13, 020507	3.5	8
245	Photoacoustic tomography of a rat cerebral cortex with a ring-based ultrasonic virtual point detector. <i>Journal of Biomedical Optics</i> , 2007 , 12, 060507	3.5	8
244	In vivo imaging and characterization of hypoxia-induced neovascularization and tumor invasion 2007 , 30, 45		8
243	Recent Advances in Photoacoustic Tomography. <i>BME Frontiers</i> , 2021 , 2021, 1-17	4.4	8
242	Photoacoustic computed tomography for functional human brain imaging [Invited]. <i>Biomedical Optics Express</i> , 2021 , 12, 4056-4083	3.5	8
241	Integration of Multitargeted Polymer-Based Contrast Agents with Photoacoustic Computed Tomography: An Imaging Technique to Visualize Breast Cancer Intratumor Heterogeneity. <i>ACS Nano</i> , 2021 , 15, 2413-2427	16.7	8
240	Photoacoustic microscopy of arteriovenous shunts and blood diffusion in early-stage tumors. Journal of Biomedical Optics, 2016 , 21, 20501	3.5	7
239	Multiscale Photoacoustic Tomography. <i>Optics and Photonics News</i> , 2018 , 29, 32	1.9	7
238	Dual-polarization analog optical phase conjugation for focusing light through scattering media. <i>Applied Physics Letters</i> , 2019 , 114, 231104	3.4	7
237	High-speed single-shot optical focusing through dynamic scattering media with full-phase wavefront shaping. <i>Applied Physics Letters</i> , 2017 , 111, 221109	3.4	7
236	Analog time-reversed ultrasonically encoded light focusing inside scattering media with a 33,000 optical power gain. <i>Scientific Reports</i> , 2015 , 5, 8896	4.9	7
235	Calibration-free structured-illumination photoacoustic flowgraphy of transverse flow in scattering media. <i>Journal of Biomedical Optics</i> , 2014 , 19, 046007	3.5	7
234	Breakthrough in Photonics 2013: Photoacoustic Tomography in Biomedicine. <i>IEEE Photonics Journal</i> , 2014 , 6,	1.8	7
233	Photobleaching imprinting microscopy: seeing clearer and deeper. <i>Journal of Cell Science</i> , 2014 , 127, 288-94	5.3	7
232	In vivo multiscale photoacoustic microscopy of human skin 2011 ,		7
231	Ultrasound-modulated optical tomography in reflection mode with ring-shaped light illumination. <i>Journal of Biomedical Optics</i> , 2009 , 14, 024015	3.5	7
230	Vessel segmentation analysis of ischemic stroke images acquired with photoacoustic microscopy 2012 ,		7

229	Combined photoacoustic and molecular fluorescence imaging in vivo. <i>Annual International Conference of the IEEE Engineering in Medicine and Biology Society</i> , 2005 , 2006, 190-2		7
228	Development of tissue-simulating optical phantoms: poly-N-isopropylacrylamide solution entrapped inside a hydrogel. <i>Physics in Medicine and Biology</i> , 1999 , 44, 309-18	3.8	7
227	Full-field mapping of ultrasonic field by light-source-synchronized projection. <i>Journal of the Acoustical Society of America</i> , 1999 , 106, L36-40	2.2	7
226	High-speed alignment optimization of digital optical phase conjugation systems based on autocovariance analysis in conjunction with orthonormal rectangular polynomials. <i>Journal of Biomedical Optics</i> , 2018 , 24, 1-11	3.5	7
225	Intelligently optimized digital optical phase conjugation with particle swarm optimization. <i>Optics Letters</i> , 2020 , 45, 431-434	3	7
224	Cuffing-based photoacoustic flowmetry in humans in the optical diffusive regime. <i>Journal of Biophotonics</i> , 2016 , 9, 208-12	3.1	7
223	Real-time observation and control of optical chaos. <i>Science Advances</i> , 2021 , 7,	14.3	7
222	Photoacoustic Computed Tomography of Breast Cancer in Response to Neoadjuvant Chemotherapy. <i>Advanced Science</i> , 2021 , 8, 2003396	13.6	7
221	Multiscale Photoacoustic Tomography of a Genetically Encoded Near-Infrared FRET Biosensor. <i>Advanced Science</i> , 2021 , 8, e2102474	13.6	7
220	Deep learning acceleration of multiscale superresolution localization photoacoustic imaging <i>Light: Science and Applications</i> , 2022 , 11, 131	16.7	7
219	Quantitative photoacoustic elastography of Young modulus in humans 2017,		6
218	Quantitative Analysis of the Fate of Gold Nanocages In Vitro and In Vivo after Uptake by U87-MG Tumor Cells. <i>Angewandte Chemie</i> , 2013 , 125, 1190-1193	3.6	6
217	Frequency-swept time-reversed ultrasonically encoded optical focusing. <i>Applied Physics Letters</i> , 2014 , 105, 191108	3.4	6
216	Tissue temperature monitoring using thermoacoustic and photoacoustic techniques 2010,		6
215	Temperature mapping using photoacoustic and thermoacoustic tomography 2012,		6
214	Laser optoacoustic imaging of turbid media: determination of optical properties by comparison with diffusion theory and Monte Carlo simulation 1996 ,		6
213	Breast cancer imaging by microwave-induced thermoacoustic tomography 2005 , 5697, 45		6
212	Dual-axis illumination for virtually augmenting the detection view of optical-resolution photoacoustic microscopy. <i>Journal of Biomedical Optics</i> , 2018 , 23, 1-7	3.5	6

(2010-2020)

211	Label-free imaging of lipid-rich biological tissues by mid-infrared photoacoustic microscopy. <i>Journal of Biomedical Optics</i> , 2020 , 25,	3.5	6
210	Dictionary learning sparse-sampling reconstruction method for 3D photoacoustic computed tomography. <i>Biomedical Optics Express</i> , 2019 , 10, 1660-1677	3.5	6
209	Up-regulation of hypoxia-inducible factor 1 alpha and hemodynamic responses following massive small bowel resection. <i>Journal of Pediatric Surgery</i> , 2013 , 48, 1330-9	2.6	5
208	Optical-Resolution Photoacoustic Microscopy for Volumetric and Spectral Analysis of Histological and Immunochemical Samples. <i>Angewandte Chemie</i> , 2014 , 126, 8237-8241	3.6	5
207	Optical sectioning by wide-field photobleaching imprinting microscopy. <i>Applied Physics Letters</i> , 2013 , 103, 183703	3.4	5
206	Multi-scale Multi-contrast Photoacoustic Microscopy 2013 ,		5
205	Toward dual-wavelength functional photoacoustic endoscopy: laser and peripheral optical systems development 2012 ,		5
204	Optical coherence computed tomography. <i>Applied Physics Letters</i> , 2007 , 91, 141107	3.4	5
203	Iron-oxide nanoparticles as a contrast agent in thermoacoustic tomography 2007, 6437, 101		5
202	Continuous-wave photoacoustic microscopy 2007 ,		5
202	Continuous-wave photoacoustic microscopy 2007, XANES STUDY OF THE VALENCE OF Pb IN (Tl0.5Pb0.5)Sr2Ca1-xYxCu2O7-\(\text{UInternational Journal of Modern Physics B, 1999}\), 13, 3693-3696	1.1	5
	XANES STUDY OF THE VALENCE OF Pb IN (Tl0.5Pb0.5)Sr2Ca1-xYxCu2O7-\(\text{UInternational Journal of }\)	1.1 3.5	
201	XANES STUDY OF THE VALENCE OF Pb IN (Tl0.5Pb0.5)Sr2Ca1-xYxCu2O7-\(\text{UInternational Journal of Modern Physics B}\), 1999 , 13, 3693-3696 Time-reversed ultrasonically encoded optical focusing through highly scattering ex vivo human		5
201	XANES STUDY OF THE VALENCE OF Pb IN (Tl0.5Pb0.5)Sr2Ca1-xYxCu2O7-[]International Journal of Modern Physics B, 1999, 13, 3693-3696 Time-reversed ultrasonically encoded optical focusing through highly scattering ex vivo human cataractous lenses. Journal of Biomedical Optics, 2018, 23, 1-4	3.5	5
201 200	XANES STUDY OF THE VALENCE OF Pb IN (Tl0.5Pb0.5)Sr2Ca1-xYxCu2O7-\(\textstyretarrow{\textsty	3·5 3·5	555
201 200 199 198	XANES STUDY OF THE VALENCE OF Pb IN (Tl0.5Pb0.5)Sr2Ca1-xYxCu2O7-\(\textstyretarrow{\textsty	3·5 3·5	5555
201 200 199 198	XANES STUDY OF THE VALENCE OF Pb IN (Tl0.5Pb0.5)Sr2Ca1-xYxCu2O7-UInternational Journal of Modern Physics B, 1999, 13, 3693-3696 Time-reversed ultrasonically encoded optical focusing through highly scattering ex vivo human cataractous lenses. Journal of Biomedical Optics, 2018, 23, 1-4 Perspective on fast-evolving photoacoustic tomography. Journal of Biomedical Optics, 2021, 26, Large field homogeneous illumination in microwave-induced thermoacoustic tomography based on a quasi-conical spiral antenna. Applied Physics Letters, 2018, 113, 123701 Non-Invasive and In Situ Characterization of the Degradation of Biomaterial Scaffolds by Volumetric Photoacoustic Microscopy. Angewandte Chemie, 2014, 126, 188-192 Photoacoustic recovery after photothermal bleaching in living cells. Journal of Biomedical Optics,	3.5 3.4 3.6	5554

193	Volumetric photoacoustic endoscopy of internal organs: a phantom and in situ study 2010,		4
192	Photoacoustic tomography with novel optical contrast agents based on gold nanocages or nanoparticles containing near-infrared dyes 2008 ,		4
191	Noninvasive mapping of the electrically stimulated mouse brain using photoacoustic microscopy 2008 ,		4
190	In-vivo imaging of nanoshell extravasation from solid tumor vasculature by photoacoustic microscopy 2007 ,		4
189	Portable real-time photoacoustic microscopy 2007 ,		4
188	Imaging of gene expression in vivo with photoacoustic tomography 2006,		4
187	Photoacoustic tomography and molecular fluorescence imaging: dual modality imaging of small animal brains in vivo 2005 ,		4
186	Autocorrelation of scattered laser light for ultrasound-modulated optical tomography in dense turbid media. <i>Applied Optics</i> , 2002 , 41, 4739-42	1.7	4
185	Isomers of gallium arsenide cluster ions. <i>Chemical Physics Letters</i> , 1992 , 194, 217-222	2.5	4
184	In vivo characterization of connective tissue remodeling using infrared photoacoustic spectra. <i>Journal of Biomedical Optics</i> , 2018 , 23, 1-6	3.5	4
183	Graphics processing unit accelerating compressed sensing photoacoustic computed tomography with total variation. <i>Applied Optics</i> , 2020 , 59, 712-719	1.7	4
182	Snapshot photoacoustic topography through an ergodic relay of optical absorption in vivo. <i>Nature Protocols</i> , 2021 , 16, 2381-2394	18.8	4
181	Nanoparticles for Photoacoustic Imaging of Vasculature 2017 , 337-356		3
180	Fighting against fast speckle decorrelation for light focusing inside live tissue by photon frequency shifting. <i>ACS Photonics</i> , 2020 , 7, 837-844	6.3	3
179	Optical-resolution photoacoustic microscopy of the metabolic rate of oxygen in a mouse renal tumor model 2015 ,		3
178	Photoacoustic microscopy of a three-dimensional arbitrary trajectory 2014 ,		3
177	Cross-optical-beam nonlinear photoacoustic microscopy 2014 ,		3
176	Noninvasive photoacoustic computed tomography of mouse brain metabolismin vivo 2013,		3

175	Measurement of Grileisen parameter of tissue by photoacoustic spectrometry 2013,		3
174	Quantitative high-resolution photoacoustic spectroscopy by combining photoacoustic imaging with diffuse optical tomography 2011 ,		3
173	Small-animal whole-body imaging using a photoacoustic full ring array system 2011,		3
172	Fast-scanning reflection-mode integrated photoacoustic and optical-coherence microscopy 2010 ,		3
171	In vivo label-free photoacoustic microscopy of the anterior segment of the mouse eye 2010,		3
170	High-Transmission-Efficiency and Side-Viewing Micro OIDRS Probe for Fast and Minimally-Invasive Tumor Margin Detection. <i>IEEE Sensors Journal</i> , 2011 , 11, 891-896	4	3
169	Endoscopic photoacoustic microscopy 2009 ,		3
168	In-vivo imaging of microcirculation using integrated photoacoustic and optical-coherence microscopy 2009 ,		3
167	Photoacoustic microscopy of human teeth 2011 ,		3
166	Publisher Note: Label-Free Bond-Selective Imaging by Listening to Vibrationally Excited Molecules [Phys. Rev. Lett. 106, 238106 (2011)]. <i>Physical Review Letters</i> , 2011 , 106,	7.4	3
165	Evaluation of the magneto-optical effect in biological tissue models using optical coherence tomography. <i>Journal of Biomedical Optics</i> , 2007 , 12, 060502	3.5	3
164	Photoacoustic tomography with a virtual point detector 2007 ,		3
163	Photoacoustic molecular imaging of small animals in vivo 2006 ,		3
162	Reply to Comment on D ptical-fiber-based Mueller optical coherence tomography D <i>Optics Letters</i> , 2004 , 29, 2875	3	3
161	High-resolution photoacoustic vascular imaging in vivo using a large-aperture acoustic lens 2005 , 5697, 7		3
160	Deep penetrating photoacoustic tomography in biological tissues 2005,		3
159	Optical-thermal simulation of human tonsillar tissue irradiation: clinical implications. <i>Lasers in Surgery and Medicine</i> , 2000 , 27, 269-73	3.6	3
158	Prospects of Photo- and Thermoacoustic Imaging in Neurosurgery. <i>Neurosurgery</i> , 2020 , 87, 11-24	3.2	3

157	Toward photoswitchable electronic pre-resonance stimulated Raman probes. <i>Journal of Chemical Physics</i> , 2021 , 154, 135102	3.9	3
156	Imaging small animal whole-body dynamics by single-impulse panoramic photoacoustic computed tomography 2017 ,		2
155	Ultrafast imaging of light scattering dynamics using second-generation compressed ultrafast photography 2017 ,		2
154	Iterative image reconstruction in elastic inhomogenous media with application to transcranial photoacoustic tomography 2017 ,		2
153	Photo-imprint super-resolution photoacoustic microscopy 2015 ,		2
152	In vivo photoacoustic flowmetry at depths of the diffusive regime based on saline injection. <i>Journal of Biomedical Optics</i> , 2015 , 20, 87001	3.5	2
151	Evolving cervical imaging technologies to predict preterm birth. <i>Seminars in Immunopathology</i> , 2020 , 42, 385-396	12	2
150	Compressed 3D Image Information and Communication Security. <i>Advanced Quantum Technologies</i> , 2018 , 1, 1800034	4.3	2
149	High-Speed Time-Reversed Ultrasonically Encoded (TRUE) Optical Focusing in Dynamic Scattering Media at 793 nm 2014 ,		2
148	Micromachined silicon acoustic delay lines for ultrasound applications. <i>Journal of Micromechanics and Microengineering</i> , 2013 , 23, 025006	2	2
147	Catheter-based photoacoustic endoscope for use in the instrument channel of a clinical video endoscope 2015 ,		2
146	Photoacoustic imaging of single circulating melanoma cells in vivo 2015 ,		2
145	Synergistic image reconstruction for hybrid ultrasound and photoacoustic computed tomography 2015 ,		2
144	Functional connectivity in the mouse brain imaged by B-mode photoacoustic microscopy 2014 ,		2
143	Optical focusing in scattering media with photoacoustic wavefront shaping (PAWS) 2014,		2
142	High-speed time-reversed ultrasonically encoded (TRUE) optical focusing inside dynamic scattering media at 793 nm 2014 ,		2
141	Broadening the detection view of high-frequency linear-array-based photoacoustic computed tomography by using planar acoustic reflectors 2014 ,		2
140	Dichroism optical-resolution photoacoustic microscopy 2012 ,		2

139	Exploring ultrasound-modulated optical tomography at clinically useful depths using the photorefractive effect 2013 ,		2
138	Anatomical and metabolic small-animal whole-body imaging using ring-shaped confocal photoacoustic computed tomography 2013 ,		2
137	Noninvasive quantification of metabolic rate of oxygen (MRO 2) by photoacoustic microscopy 2011 ,		2
136	Photoacoustic and thermoacoustic tomography of dog prostates 2011 ,		2
135	Novel breast cancer detection system combining both thermoacoustic (TA) and photoacoustic (PA) tomography using carbon nanotubes (CNTs) as a dual contrast agent 2009 ,		2
134	Monitoring the healing process of laser-induced microvascular lesions using optical-resolution photoacoustic microscopy 2009 ,		2
133	In vivo photoacoustic (PA) mapping of sentinel lymph nodes (SLNs) using carbon nanotubes (CNTs) as a contrast agent 2009 ,		2
132	Noninvasive photoacoustic sentinel lymph node mapping using Au nanocages as a lymph node tracer in a rat model 2009 ,		2
131	A fast 512-element ring array photoacoustic imaging system for small animals 2009 ,		2
130	Micromachined "Side-Viewing" Optical Sensor Probe for Detection of Esophageal Cancers. <i>Sensors and Actuators A: Physical</i> , 2009 , 150, 144-150	3.9	2
129	A 2.5-mm outer diameter photoacoustic endoscopic mini-probe based on a highly sensitive PMN-PT ultrasonic transducer 2012 ,		2
128	Label-free photoacoustic microscopy of cytochrome c in cells 2012 ,		2
127	The speckle-free nature of photoacoustic imaging 2009 ,		2
126	PRELIMINARY STUDY ON SKIN CANCER DETECTION IN SENCAR MICE USING MUELLER OPTICAL COHERENCE TOMOGRAPHY. <i>Journal of Innovative Optical Health Sciences</i> , 2009 , 2, 289-294	1.2	2
125	Photoacoustic Tomography and Microscopy. Optics and Photonics News, 2008, 19, 36	1.9	2
124	Monkey brain cortex imaging by use of photoacoustic tomography 2008,		2
123	High-resolution photoacoustic tomography in vivo		2
122	High-resolution burn imaging in pig skin by photoacoustic microscopy 2007 ,		2

121	Speckle in photoacoustic tomography 2006 ,		2
120	Spatial resolution in three-dimensional photo-acoustic reconstruction 2004 , 5320, 264		2
119	Image reconstruction in ultrasound-modulated optical tomography 2004 , 5320, 268		2
118	Laser-induced photoacoustic tomography enhanced with an optical contrast agent 2004 , 5320, 77		2
117	Mitigating artifacts via half-time reconstruction in thermoacoustic tomography 2005,		2
116	Theoretical study on the mechanisms of ultrasonic modulation of multiply scattered light 2001 , 4256, 208		2
115	Measurement of tissue optical properties and modeling of optimal light delivery for tumor treatment 1998 , 3254, 332		2
114	Analysis of diffusion theory and similarity relations for light reflectance by turbid media 1993 , 1888, 107		2
113	Clinical photoacoustic computed tomography of the human breast in vivo within a single breath hold 2018 ,		2
112	Spatiotemporal strategies to identify aggressive biology in precancerous breast biopsies. <i>WIREs Mechanisms of Disease</i> , 2021 , 13, e1506	0.3	2
111	Photoacoustic Tomography of Neural Systems 2020 , 349-378		2
110	Three-Dimensional Optical-Resolution Photoacoustic Microscopy 2013 , 55-77		2
109	Single-shot time-reversed optical focusing into and through scattering media. <i>ACS Photonics</i> , 2020 , 7, 2871-2877	6.3	2
108	NIH Workshop 2018: Towards Minimally Invasive or Noninvasive Approaches to Assess Tissue Oxygenation Pre- and Post-transfusion. <i>Transfusion Medicine Reviews</i> , 2021 , 35, 46-55	7.4	2
107	Photoacoustic Tomography of the Brain 2013 , 137-156		2
106	Early-stage tumor detection using photoacoustic microscopy: a pattern recognition approach 2017,		1
105	Isotropic-resolution linear-array-based photoacoustic computed tomography through inverse Radon transform 2015 ,		1
104	Compensation for acoustic heterogeneities in photoacoustic computed tomography using a variable temporal data truncation reconstruction method 2016 ,		1

103	Bessel beam Grueneisen photoacoustic microscopy with extended depth of field 2016,	1
102	PHOTOACOUSTIC TOMOGRAPHY AND ITS APPLICATIONS IN DRUG DELIVERY AND PHOTOTHERMAL THERAPY 2013 , 45-69	1
101	Photoacoustic computed tomography without accurate ultrasonic transducer responses 2015,	1
100	In vivo deep brain imaging of rats using oral-cavity illuminated photoacoustic computed tomography 2015 ,	1
99	Low-rank matrix estimation-based spatio-temporal image reconstruction for dynamic photoacoustic computed tomography 2014 ,	1
98	Simultaneous reconstruction of absorbed optical energy density and speed of sound distributions in photoacoustic computed tomography 2014 ,	1
97	Mouse brain imaging using photoacoustic computed tomography 2014 ,	1
96	Combined optical and mechanical scanning in optical-resolution photoacoustic microscopy 2014,	1
95	A handheld optical fiber parallel acoustic delay line (PADL) probe for photoacoustic tomography 2014 ,	1
94	Photoacoustic molecular imaging of angiogenesis using theranostic B-targeted copper nanoparticles incorporating a sn-2 lipase-labile fumagillin prodrug 2014 ,	1
93	Resting-state functional connectivity imaging of the mouse brain using photoacoustic tomography 2014 ,	1
92	Carbon nanoparticles as a multimodal thermoacoustic and photoacoustic contrast agent 2013,	1
91	Water-Immersible MEMS scanning mirror designed for wide-field fast-scanning photoacoustic microscopy 2013 ,	1
90	FEster resonance energy transfer photoacoustic microscopy 2013 ,	1
89	High resolution functional photoacoustic computed tomography of the mouse brain during electrical stimulation 2013 ,	1
88	Photoacoustic endoscopic imaging study of melanoma tumor growth in a rat colorectumin vivo 2013 ,	1
87	Optimal oblique light illumination for photoacoustic microscopy beyond the diffusion limit 2011,	1
86	Tyrosinase-catalyzed melanin as a contrast agent for photoacoustic tomography 2011,	1

85	Dual-mode photoacoustic microscopy of carbon nanotube incorporated scaffolds in blood and biological tissues 2011 ,	1
84	In vivo functional human imaging using photoacoustic microscopy: response to ischemic and thermal stimuli 2010 ,	1
83	Real-time monitoring of small animal cortical hemodynamics by photoacoustic tomography 2010,	1
82	Transverse flow measurement using photoacoustic Doppler bandwidth broadening: phantom and in vivo studies 2010 ,	1
81	Optical-resolution photoacoustic microscopy of amyloid-Ideposits in vivo 2010,	1
80	Photoacoustic tomography: High-resolution imaging of optical contrast in vivo at superdepths 2009 ,	1
79	Three-dimensional photoacoustic tomography of small animal brain with a curved array transducer 2009 ,	1
78	M -mode photoacoustic flow imaging 2009 ,	1
77	Subwavelength-resolution photoacoustic microscopy for label-free detection of optical absorption in vivo 2011 ,	1
76	Three-dimensional photoacoustic imaging with a clinical two-dimensional matrix ultrasound transducer 2011 ,	1
75	Volumetric Photoacoustic Endoscopy 2012 ,	1
74	Double-illumination photoacoustic microscopy of intestinal hemodynamics following massive small bowel resection 2012 ,	1
73	Ring-shaped confocal photoacoustic computed tomography for small-animal whole-body imaging 2012 ,	1
72	Time-reversed ultrasonically encoded (TRUE) optical focusing in reflection mode: demonstrations in tissue mimicking phantoms and ex vivo tissue 2012 ,	1
71	The study of quantitative optical absorption imaging by using Monte Carlo simulation of combined photoacoustic tomography and ultrasound-modulated optical tomography 2012 ,	1
70	In vivo imaging of cell nuclei by photoacoustic microscopy without staining 2012,	1
69	Wide range quantitative photoacoustic spectroscopy to measure non-linear optical absorption of hemoglobin 2012 ,	1
68	DMD-encoded spectral photoacoustic microscopy 2012 ,	1

67	In vivo, dual-modality imaging of mouse eyes: optical coherence tomography and photoacoustic microscopy within a single instrument 2010 ,		1
66	Effects of wavelength-dependent fluence attenuation on the noninvasive photoacoustic imaging of hemoglobin oxygen saturation in subcutaneous vasculature in vivo 2008 ,		1
65	Imaging of optical scattering contrast using ultrasound-modulated optical tomography 2008,		1
64	RF diffraction effect in RF-induced thermoacoustic tomography: calibration and distortion 2008,		1
63	Towards very high resolution imaging in ultrasound-modulated optical tomography of biological tissues 2006 ,		1
62	Functional photoacoustic microscopy in vivo 2006 , 6086, 377		1
61	In vivo functional photoacoustic imaging of brain tumor vasculature 2006 , 6086, 91		1
60	Virtual-detector synthetic aperture focusing technique with application in in vivo photoacoustic microscopy 2006 , 6086, 369		1
59	High-resolution functional photoacoustic tomography		1
58	Fiber-based polarization-sensitive Mueller-matrix optical coherence tomography with continuous source polarization modulation 2004 ,		1
57	Signal and noise in ultrasound-modulated optical tomography: a Monte Carlo study 2004,		1
56	A theoretical investigation of human skin thermal response to near-infrared laser irradiation 2004,		1
55	Analysis of physiological parameters in skin tumors by a scaleable Monte Carlo simulation 2005,		1
54	Analytical model for modulation of diffuse light by pulsed ultrasonic waves 2005,		1
53	Cluster Model Description of Polarized Cu K-Edge Spectra of Nd2-xCexCuO4-\(\textstar{\textstar}\) International Journal of Modern Physics B, 1998 , 12, 3299-3305	1.1	1
52	Cu K-Edge Study of (Tl0.5Pb0.5)Sr2Ca1-xYxCu2O7-[International Journal of Modern Physics B, 1998 , 12, 3296-3298	1.1	1
51	Oblique-incidence reflectometry: one relative profile measurement of diffuse reflectance yields two optical parameters 1995 , 2627, 165		1
50	Analysis of Spatial Resolution in Photoacoustic Tomography 2017 , 47-60		1

49	Probing single-cell oxygen reserve in sickled erythrocytes via in vivo photoacoustic microscopy. <i>American Journal of Hematology</i> , 2021 ,	7.1	1
48	Time Reversal in Photoacoustic or Thermoacoustic Tomography 2017 , 117-120		1
47	Microwave-Induced Acoustic (Thermoacoustic) Tomography 2017, 339-348		1
46	Universal Back-Projection Algorithm for Photoacoustic Tomography 2017 , 37-46		1
45	In vivo photoacoustic multi-contrast imaging and detection of protein interactions using a small near-infrared photochromic protein 2019 ,		1
44	Translational Photoacoustic Microscopy. <i>Progress in Optical Science and Photonics</i> , 2016 , 47-73	0.3	1
43	Correcting for heterogeneous fluence profiles in photoacoustic imaging with diffuse optical tomography 2010 ,		1
42	Photoacoustic Tomography: Ultrasonically Breaking through the Optical Diffusion Limit 2012 ,		1
41	EGFR in enterocytes & endothelium and HIF1IIn enterocytes are dispensable for massive small bowel resection induced angiogenesis. <i>PLoS ONE</i> , 2020 , 15, e0236964	3.7	1
40	Reversibly switchable photoacoustic tomography using a genetically encoded near-infrared phytochrome 2016 ,		1
39	Photoacoustic Tomography Enhanced by Nanoparticles 2016 , 1-14		1
38	Deep subwavelength optical imaging using correlated nano-torches. <i>Applied Physics Letters</i> , 2013 , 103, 201119	3.4	O
37	Introduction to the Special Issue on Biophotonics Part 2. <i>IEEE Journal of Selected Topics in Quantum Electronics</i> , 2010 , 16, 703-705	3.8	O
36	High-resolution ultrasound-aided biophotonic imaging. <i>Annual International Conference of the IEEE Engineering in Medicine and Biology Society</i> , 2004 , 2004, 5307-10		О
35	Radiative Transfer Equation and Diffusion Theory83-118		0
34	Photoacoustic Imaging. Advances in Experimental Medicine and Biology, 2021 , 3233, 147-175	3.6	O
33	Focusing light into scattering media with ultrasound-induced field perturbation. <i>Light: Science and Applications</i> , 2021 , 10, 159	16.7	0
32	Neurophotonic tools for microscopic measurements and manipulation: status report <i>Neurophotonics</i> , 2022 , 9, 013001	3.9	O

Photoacoustic Tomography for Biomedical Applications 2015, 1-34 31 Photoacoustic Tomography 2012, 283-321 30 Ultrasound-Modulated Optical Tomography 2012, 323-341 29 Monte Carlo Modeling of Photon Transport in Biological Tissue 2012, 37-65 28 Mueller Optical Coherence Tomography 2012, 219-247 27 Guest Editorial to the Special Letters Issue on Emerging Technologies in Multiparameter Biomedical Optical Imaging and Image Analysis. IEEE Transactions on Biomedical Engineering, 2010, 26 57, 2551-2554 JBO Setting New Records. Journal of Biomedical Optics, 2012, 17, 020101 25 3.5 Sensing of Optical Properties and Spectroscopy 2012, 135-151 24 Ultrasonic modulation of diffuse light in turbid media 1997, 2979, 24 23 Theoretical studies of optimal light delivery for tumor treatment 1997, 2975, 84 22 In vivo Functional Imaging Using Photoacoustic Microscopy 2006, WD1 21 Signal dependence and noise source in ultrasound-modulated optical tomography: erratum 2006, 20 45, 1288 Burn depth determination using high-speed polarization-sensitive Mueller optical coherence 19 tomography with continuous polarization modulation 2006, 6079, 421 Photoacoustic and thermoacoustic tomography with both optical and electrical contrasts 2006, 18 6086, 332 Three-dimensional in vivo near-infrared photoacoustic tomography of whole small animal head 17 2006, 6086, 208 16 In vivo functional photoacoustic tomography of traumatic brain injury in rats 2006, 6086, 201 Characterization of the polarization properties of biological tissues with fiber-based Mueller-matrix 15 optical coherence tomography 2004, 5319, 130 High-resolution imaging using ultrasound-modulated optical tomography 2004, 5320, 150 14

13	Diffusion theory for multilayered scattering media 2005 , 5695, 101
12	Ultrasound-modulated optical tomography in biological tissue: theoretical and experimental studies 2000 , SuF2
11	Imaging Turbid Media Using Sonoluminescence 1998 , AWA6
10	Oblique incidence reflectometry: optical-fiber implementation 1996 , 2681, 266
9	Dark-Field Confocal Photoacoustic Microscopy 2017 , 267-280
8	Deep-Penetrating Reflection-Mode Photoacoustic Imaging 2017 , 281-286
7	Photoacoustic Tomography Based on Ring-Shaped Virtual Point Ultrasonic Detector 2017 , 201-208
6	Photoacoustic Tomography 2010 , 743-760
5	Time-reversed ultrasonically encoded optical focusing in biological tissue. <i>Journal of Biomedical Optics</i> , 2012 , 17, 036001
4	Photoacoustic Tomography of Microcirculation259-278
3	Convolution for Broadbeam Responses67-82
2	Hybrid Model of Monte Carlo Method and Diffusion Theory119-134
1	Photoacoustic Molecular Imaging: Principles and Practice 2021 , 233-244