Tiffany Abitbol

List of Publications by Citations

Source: https://exaly.com/author-pdf/2290144/tiffany-abitbol-publications-by-citations.pdf

Version: 2024-04-25

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

16 29 1,453 33 g-index h-index citations papers 6.1 4.85 1,745 33 L-index avg, IF ext. citations ext. papers

#	Paper	IF	Citations
29	Nanocellulose, a tiny fiber with huge applications. <i>Current Opinion in Biotechnology</i> , 2016 , 39, 76-88	11.4	530
28	Estimation of the surface sulfur content of cellulose nanocrystals prepared by sulfuric acid hydrolysis. <i>Cellulose</i> , 2013 , 20, 785-794	5.5	175
27	Reinforcement with cellulose nanocrystals of poly(vinyl alcohol) hydrogels prepared by cyclic freezing and thawing. <i>Soft Matter</i> , 2011 , 7, 2373	3.6	154
26	Fluorescent labeling and characterization of cellulose nanocrystals with varying charge contents. <i>Biomacromolecules</i> , 2013 , 14, 3278-84	6.9	95
25	Surface Charge Influence on the Phase Separation and Viscosity of Cellulose Nanocrystals. <i>Langmuir</i> , 2018 , 34, 3925-3933	4	72
24	Surface modification of cellulose nanocrystals with cetyltrimethylammonium bromide. <i>Nordic Pulp and Paper Research Journal</i> , 2014 , 29, 46-57	1.1	67
23	Continuous Processing of Nanocellulose and Polylactic Acid into Multilayer Barrier Coatings. <i>ACS Applied Materials & District Research Applied Materials & District Research Research Applied Materials & District Research Researc</i>	9.5	52
22	Mycelium bio-composites in industrial design and architecture: Comparative review and experimental analysis. <i>Journal of Cleaner Production</i> , 2020 , 246, 119037	10.3	45
21	Hybrid fluorescent nanoparticles from quantum dots coupled to cellulose nanocrystals. <i>Cellulose</i> , 2017 , 24, 1287-1293	5.5	32
20	CdSe/ZnS QDs Embedded in Cellulose Triacetate Films with Hydrophilic Surfaces. <i>Chemistry of Materials</i> , 2007 , 19, 4270-4276	9.6	29
19	Direct Cryo Writing of Aerogels Via 3D Printing of Aligned Cellulose Nanocrystals Inspired by the Plant Cell Wall. <i>Colloids and Interfaces</i> , 2019 , 3, 46	3	28
18	Continuous roll-to-roll coating of cellulose nanocrystals onto paperboard. <i>Cellulose</i> , 2018 , 25, 6055-606	69 5.5	26
17	Bionanocomposite Films from Resilin-CBD Bound to Cellulose Nanocrystals. <i>Industrial Biotechnology</i> , 2015 , 11, 44-58	1.3	23
16	Incorporation into paper of cellulose triacetate films containing semiconductor nanoparticles. <i>Cellulose</i> , 2009 , 16, 319-326	5.5	20
15	Electrospinning of fluorescent fibers from CdSe/ZnS quantum dots in cellulose triacetate. <i>Journal of Applied Polymer Science</i> , 2011 , 119, 803-810	2.9	19
14	Human Dermal Fibroblast Viability and Adhesion on Cellulose Nanomaterial Coatings: Influence of Surface Characteristics. <i>Biomacromolecules</i> , 2020 , 21, 1560-1567	6.9	17
13	Chiral Nematic Self-Assembly of Cellulose Nanocrystals in Suspensions and Solid Films. <i>Materials and Energy</i> , 2014 , 37-56		14

LIST OF PUBLICATIONS

12	Nanocellulose-Based Hybrid Materials for UV Blocking and Mechanically Robust Barriers <i>ACS Applied Bio Materials</i> , 2020 , 3, 2245-2254	4.1	13
11	Comparison of nanocrystalline cellulose and fumed silica in latex coatings. <i>Green Materials</i> , 2014 , 2, 200	6-3.21	11
10	Biofabrication of NanocelluloseMycelium Hybrid Materials. <i>Advanced Sustainable Systems</i> , 2021 , 5, 200	01;9;6	11
9	Plant-based Structures as an Opportunity to Engineer Optical Functions in next-generation Light Management. <i>Advanced Materials</i> , 2021 , e2104473	24	6
8	Fluorescently labeled cellulose nanofibrils for detection and loss analysis. <i>Carbohydrate Polymers</i> , 2020 , 250, 116943	10.3	4
7	Directed Assembly of Oriented Cellulose Nanocrystal Films. <i>Materials and Energy</i> , 2014 , 79-103		3
6	Cellulose nanocrystal/low methoxyl pectin gels produced by internal ionotropic gelation. <i>Carbohydrate Polymers</i> , 2021 , 260, 117345	10.3	2
5	State of the art, recent advances, and challenges in the field of fungal mycelium materials: a snapshot of the 2021 Mini Meeting. <i>Fungal Biology and Biotechnology</i> , 2021 , 8, 12	7.5	1
4	Visualization of nanostructural dislocations in microcrystalline cellulose fibrils through super-resolution fluorescence microscopy. <i>Microscopy and Microanalysis</i> , 2021 , 27, 854-857	0.5	1
3	Bioconversion of food waste to biocompatible wet-laid fungal films. <i>Materials and Design</i> , 2022 , 216, 110534	8.1	1
2	The nanocellulose family 2021 , 1-14		O
1	Influence of mineral coatings on fibroblast behaviour: The importance of coating formulation and experimental design. <i>Colloids and Surfaces B: Biointerfaces</i> , 2021 , 208, 112059	6	