Tiffany Abitbol

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2290144/publications.pdf

Version: 2024-02-01

32 papers

2,111 citations

393982 19 h-index 433756 31 g-index

33 all docs 33 docs citations

 $\begin{array}{c} 33 \\ times \ ranked \end{array}$

2995 citing authors

#	Article	IF	CITATIONS
1	Nanocellulose, a tiny fiber with huge applications. Current Opinion in Biotechnology, 2016, 39, 76-88.	3.3	733
2	Estimation of the surface sulfur content of cellulose nanocrystals prepared by sulfuric acid hydrolysis. Cellulose, 2013, 20, 785-794.	2.4	226
3	Reinforcement with cellulose nanocrystals of poly(vinyl alcohol) hydrogels prepared by cyclic freezing and thawing. Soft Matter, 2011, 7, 2373.	1.2	189
4	Surface Charge Influence on the Phase Separation and Viscosity of Cellulose Nanocrystals. Langmuir, 2018, 34, 3925-3933.	1.6	120
5	Fluorescent Labeling and Characterization of Cellulose Nanocrystals with Varying Charge Contents. Biomacromolecules, 2013, 14, 3278-3284.	2.6	111
6	Mycelium bio-composites in industrial design and architecture: Comparative review and experimental analysis. Journal of Cleaner Production, 2020, 246, 119037.	4.6	111
7	Continuous Processing of Nanocellulose and Polylactic Acid into Multilayer Barrier Coatings. ACS Applied Materials & Samp; Interfaces, 2019, 11, 11920-11927.	4.0	96
8	Surface modification of cellulose nanocrystals with cetyltrimethylammonium bromide. Nordic Pulp and Paper Research Journal, 2014, 29, 46-57.	0.3	90
9	Plantâ€Based Structures as an Opportunity to Engineer Optical Functions in Nextâ€Generation Light Management. Advanced Materials, 2022, 34, e2104473.	11.1	48
10	Hybrid fluorescent nanoparticles from quantum dots coupled to cellulose nanocrystals. Cellulose, 2017, 24, 1287-1293.	2.4	43
11	Direct Cryo Writing of Aerogels Via 3D Printing of Aligned Cellulose Nanocrystals Inspired by the Plant Cell Wall. Colloids and Interfaces, 2019, 3, 46.	0.9	43
12	Continuous roll-to-roll coating of cellulose nanocrystals onto paperboard. Cellulose, 2018, 25, 6055-6069.	2.4	35
13	CdSe/ZnS QDs Embedded in Cellulose Triacetate Films with Hydrophilic Surfaces. Chemistry of Materials, 2007, 19, 4270-4276.	3.2	33
14	Bionanocomposite Films from Resilin-CBD Bound to Cellulose Nanocrystals. Industrial Biotechnology, 2015, 11, 44-58.	0.5	29
15	Human Dermal Fibroblast Viability and Adhesion on Cellulose Nanomaterial Coatings: Influence of Surface Characteristics. Biomacromolecules, 2020, 21, 1560-1567.	2.6	27
16	Biofabrication of Nanocellulose–Mycelium Hybrid Materials. Advanced Sustainable Systems, 2021, 5, 2000196.	2.7	24
17	Incorporation into paper of cellulose triacetate films containing semiconductor nanoparticles. Cellulose, 2009, 16, 319-326.	2.4	22
18	Electrospinning of fluorescent fibers from CdSe/ZnS quantum dots in cellulose triacetate. Journal of Applied Polymer Science, 2011, 119, 803-810.	1.3	22

#	Article	lF	Citations
19	Nanocellulose-Based Hybrid Materials for UV Blocking and Mechanically Robust Barriers. ACS Applied Bio Materials, 2020, 3, 2245-2254.	2.3	22
20	Chiral Nematic Self-Assembly of Cellulose Nanocrystals in Suspensions and Solid Films. Materials and Energy, 2014, , 37-56.	2.5	15
21	Comparison of nanocrystalline cellulose and fumed silica in latex coatings. Green Materials, 2014, 2, 206-221.	1.1	13
22	Cellulose nanocrystal/low methoxyl pectin gels produced by internal ionotropic gelation. Carbohydrate Polymers, 2021, 260, 117345.	5.1	12
23	Efficient Labeling of Nanocellulose for High-Resolution Fluorescence Microscopy Applications. Biomacromolecules, 2022, 23, 1981-1994.	2.6	12
24	Fluorescently labeled cellulose nanofibrils for detection and loss analysis. Carbohydrate Polymers, 2020, 250, 116943.	5.1	8
25	State of the art, recent advances, and challenges in the field of fungal mycelium materials: a snapshot of the 2021 Mini Meeting. Fungal Biology and Biotechnology, 2021, 8, 12.	2.5	7
26	Sustainable and Printable Nanocellulose-Based Ionogels as Gel Polymer Electrolytes for Supercapacitors. Nanomaterials, 2022, 12, 273.	1.9	5
27	Use of Nanocellulose to Produce Water-Based Conductive Inks with Ag NPs for Printed Electronics. International Journal of Molecular Sciences, 2022, 23, 2946.	1.8	4
28	Bioconversion of food waste to biocompatible wet-laid fungal films. Materials and Design, 2022, 216, 110534.	3.3	4
29	Directed Assembly of Oriented Cellulose Nanocrystal Films. Materials and Energy, 2014, , 79-103.	2.5	3
30	The nanocellulose family. , 2021, , 1-14.		1
31	Visualization of nanostructural dislocations in microcrystalline cellulose fibrils through super-resolution fluorescence microscopy. Microscopy and Microanalysis, 2021, 27, 854-857.	0.2	1
32	Influence of mineral coatings on fibroblast behaviour: The importance of coating formulation and experimental design. Colloids and Surfaces B: Biointerfaces, 2021, 208, 112059.	2.5	0