
Antonia Follenzi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2289131/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Factor VIII as a potential player in cancer pathophysiology. Journal of Thrombosis and Haemostasis, 2022, 20, 648-660.	1.9	4
2	Nursing students' clinical placement experiences during the Covid-19 pandemic: A phenomenological study. Nurse Education in Practice, 2022, 59, 103297.	1.0	20
3	Therapeutic correction of hemophilia A by transplantation of hPSC-derived liver sinusoidal endothelial cell progenitors. Cell Reports, 2022, 39, 110621.	2.9	9
4	Liver-directed lentiviral gene therapy corrects hemophilia A mice and achieves normal-range factor VIII activity in non-human primates. Nature Communications, 2022, 13, 2454.	5.8	11
5	Liver gene therapy with inteinâ€mediated F8 <i>trans</i> â€splicing corrects mouse haemophilia A. EMBO Molecular Medicine, 2022, 14, e15199.	3.3	5
6	Deciphering the Ets-1/2-mediated transcriptional regulation of F8 gene identifies a minimal F8 promoter for hemophilia A gene therapy. Haematologica, 2021, 106, 1624-1635.	1.7	3
7	Pleckstrin-2 is essential for erythropoiesis in β-thalassemic mice, reducing apoptosis and enhancing enucleation. Communications Biology, 2021, 4, 517.	2.0	8
8	Efficient and safe correction of hemophilia A by lentiviral vector-transduced BOECs in an implantable device. Molecular Therapy - Methods and Clinical Development, 2021, 23, 551-566.	1.8	11
9	P.168: Biofabrication of a Functional Vascularized Endocrine Pancreas (VEP) for Type 1 Diabetes. Transplantation, 2021, 105, S71-S71.	0.5	0
10	Bio-Engineering of Pre-Vascularized Islet Organoids for the Treatment of Type 1 Diabetes. Transplant International, 2021, 35, 10214.	0.8	28
11	Flow-CytometryÂPlatform for Intracellular Detection of FVIII in Blood Cells: A New Tool to Assess Gene Therapy Efficiency for Hemophilia A. Molecular Therapy - Methods and Clinical Development, 2020, 17, 1-12.	1.8	2
12	Regulatory-Compliant Validation of a Highly Sensitive qPCR for Biodistribution Assessment of Hemophilia A Patient Cells. Molecular Therapy - Methods and Clinical Development, 2020, 18, 176-188.	1.8	3
13	Multiparameter flow cytometric detection and quantification of senescent cells in vitro. Biogerontology, 2020, 21, 773-786.	2.0	15
14	iPSC-Derived Liver Organoids: A Journey from Drug Screening, to Disease Modeling, Arriving to Regenerative Medicine. International Journal of Molecular Sciences, 2020, 21, 6215.	1.8	49
15	Identification and functional characterization of a novel splicing variant in the F8 coagulation gene causing severe hemophilia A. Journal of Thrombosis and Haemostasis, 2020, 18, 1050-1064.	1.9	2
16	Biological and clinical implications of <i>BIRC3</i> mutations in chronic lymphocytic leukemia. Haematologica, 2020, 105, 448-456.	1.7	64
17	Escape or Fight: Inhibitors in Hemophilia A. Frontiers in Immunology, 2020, 11, 476.	2.2	8
18	Tumor Targeting by Monoclonal Antibody Functionalized Magnetic Nanoparticles. Nanomaterials, 2019, 9, 1575.	1.9	26

#	Article	IF	CITATIONS
19	Insulin-producing organoids engineered from islet and amniotic epithelial cells to treat diabetes. Nature Communications, 2019, 10, 4491.	5.8	106
20	Tailoring the CRISPR system to transactivate coagulation gene promoters in normal and mutated contexts. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2019, 1862, 619-624.	0.9	8
21	FVIII expression by its native promoter sustains long-term correction avoiding immune response in hemophilic mice. Blood Advances, 2019, 3, 825-838.	2.5	24
22	Transcriptional Targeting and MicroRNA Regulation of Lentiviral Vectors. Molecular Therapy - Methods and Clinical Development, 2019, 12, 223-232.	1.8	15
23	In Atp7bâ^'/â^' Mice Modeling Wilson's Disease Liver Repopulation With Bone Marrow-Derived Myofibroblasts or Inflammatory Cells and Not Hepatocytes Is Deleterious. Gene Expression, 2019, 19, 15-24.	0.5	1
24	Synthesis and characterization of silicaâ€coated superparamagnetic iron oxide nanoparticles and interaction with pancreatic cancer cells. International Journal of Applied Ceramic Technology, 2018, 15, 947-960.	1.1	7
25	A humanized mouse model of liver fibrosis following expansion of transplanted hepatic stellate cells. Laboratory Investigation, 2018, 98, 525-536.	1.7	13
26	Patient-Specific iPSC-Derived Endothelial Cells Provide Long-Term Phenotypic Correction of Hemophilia A. Stem Cell Reports, 2018, 11, 1391-1406.	2.3	46
27	Emerging Therapeutic Approaches for Diamond Blackfan Anemia. Current Gene Therapy, 2018, 18, 327-335.	0.9	14
28	New technologies in gene therapy for inducing immune tolerance in hemophilia A. Expert Review of Clinical Immunology, 2018, 14, 1013-1019.	1.3	7
29	A functional assay for the clinical annotation of genetic variants of uncertain significance in Diamond-Blackfan anemia. Human Mutation, 2018, 39, 1102-1111.	1.1	9
30	PPARs are mediators of anti-cancer properties of superparamagnetic iron oxide nanoparticles (SPIONs) functionalized with conjugated linoleic acid. Chemico-Biological Interactions, 2018, 292, 9-14.	1.7	13
31	Fetuin B links vitamin D deficiency and pediatric obesity: Direct negative regulation by vitamin D. Journal of Steroid Biochemistry and Molecular Biology, 2018, 182, 37-49.	1.2	5
32	Innovative superparamagnetic iron-oxide nanoparticles coated with silica and conjugated with linoleic acid: Effect on tumor cell growth and viability. Materials Science and Engineering C, 2017, 76, 439-447.	3.8	18
33	Decreasing TfR1 expression reverses anemia and hepcidin suppression in Î ² -thalassemic mice. Blood, 2017, 129, 1514-1526.	0.6	52
34	A Novel Platform for Immune Tolerance Induction in Hemophilia A Mice. Molecular Therapy, 2017, 25, 1815-1830.	3.7	52
35	Magnetite and silica-coated magnetite nanoparticles are highly biocompatible on endothelial cells <i>in vitro</i> . Biomedical Physics and Engineering Express, 2017, 3, 025015.	0.6	11
36	Lymphoblastoid cell lines from Diamond Blackfan anaemia patients exhibit a full ribosomal stress phenotype that is rescued by gene therapy. Scientific Reports, 2017, 7, 12010.	1.6	19

#	Article	lF	CITATIONS
37	Oxidative and ER stress-dependent ASK1 activation in steatotic hepatocytes and Kupffer cells sensitizes mice fatty liver to ischemia/reperfusion injury. Free Radical Biology and Medicine, 2017, 112, 141-148.	1.3	40
38	Tumor targeting by lentiviral vectors combined with magnetic nanoparticles in mice. Acta Biomaterialia, 2017, 59, 303-316.	4.1	33
39	A long term, non-tumorigenic rat hepatocyte cell line and its malignant counterpart, as tools to study hepatocarcinogenesis. Oncotarget, 2017, 8, 15716-15731.	0.8	5
40	Endothelial MMP-9 drives the inflammatory response in abdominal aortic aneurysm (AAA). American Journal of Translational Research (discontinued), 2017, 9, 5485-5495.	0.0	16
41	Genetically modified human <scp>CD</scp> 4 ⁺ T cells can be evaluated <i>inÂvivo</i> without lethal graftâ€versusâ€host disease. Immunology, 2016, 148, 339-351.	2.0	9
42	Increased hepcidin in transferrin-treated thalassemic mice correlates with increased liver BMP2 expression and decreased hepatocyte ERK activation. Haematologica, 2016, 101, 297-308.	1.7	22
43	The balance between IL-17 and IL-22 produced by liver-infiltrating T-helper cells critically controls NASH development in mice. Clinical Science, 2016, 130, 193-203.	1.8	116
44	Lentiviral vector interactions with the host cell. Current Opinion in Virology, 2016, 21, 102-108.	2.6	14
45	The Dendritic Cell Major Histocompatibility Complex II (MHC II) Peptidome Derives from a Variety of Processing Pathways and Includes Peptides with a Broad Spectrum of HLA-DM Sensitivity. Journal of Biological Chemistry, 2016, 291, 5576-5595.	1.6	54
46	Kupffer Cell Transplantation in Mice for Elucidating Monocyte/Macrophage Biology and for Potential in Cell or Gene Therapy. American Journal of Pathology, 2016, 186, 539-551.	1.9	30
47	Extrahepatic sources of factor VIII potentially contribute to the coagulation cascade correcting the bleeding phenotype of mice with hemophilia A. Haematologica, 2015, 100, 881-892.	1.7	43
48	Nrf2, but not βâ€ c atenin, mutation represents an early event in rat hepatocarcinogenesis. Hepatology, 2015, 62, 851-862.	3.6	81
49	Human Cardiac Progenitor Spheroids Exhibit Enhanced Engraftment Potential. PLoS ONE, 2015, 10, e0137999.	1.1	22
50	Pharmacological Preconditioning by Adenosine A2a Receptor Stimulation: Features of the Protected Liver Cell Phenotype. BioMed Research International, 2015, 2015, 1-9.	0.9	11
51	Mouse hepatocytes and LSEC proteome reveal novel mechanisms of ischemia/reperfusion damage and protection by A2aR stimulation. Journal of Hepatology, 2015, 62, 573-580.	1.8	30
52	Dissecting the transcriptional phenotype of ribosomal protein deficiency: implications for Diamond-Blackfan Anemia. Gene, 2014, 545, 282-289.	1.0	44
53	Visualization of Dynamics of Single Endogenous mRNA Labeled in Live Mouse. Science, 2014, 343, 422-424.	6.0	283
54	Monophasic and Biphasic Electrical Stimulation Induces a Precardiac Differentiation in Progenitor Cells Isolated from Human Heart, Stem Cells and Development, 2014, 23, 888-898	1.1	52

#	Article	IF	CITATIONS
55	Isolation and Characterization of a Spontaneously Immortalized Multipotent Mesenchymal Cell Line Derived from Mouse Subcutaneous Adipose Tissue. Stem Cells and Development, 2013, 22, 2873-2884.	1.1	25
56	Genetic Ablation of Cav1 Differentially Affects Melanoma Tumor Growth and Metastasis in Mice: Role of Cav1 in Shh Heterotypic Signaling and Transendothelial Migration. Cancer Research, 2012, 72, 2262-2274.	0.4	20
57	Repressor element-1 silencing transcription factor (REST)-dependent epigenetic remodeling is critical to ischemia-induced neuronal death. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, E962-71.	3.3	162
58	Role of bone marrow transplantation for correcting hemophilia A in mice. Blood, 2012, 119, 5532-5542.	0.6	55
59	N-glycosylation of the mammalian dipeptidyl aminopeptidase-like protein 10 (DPP10) regulates trafficking and interaction with Kv4 channels. International Journal of Biochemistry and Cell Biology, 2012, 44, 876-885.	1.2	9
60	Annexin A2 binds to endosomes following organelle destabilization by particulate wear debris. Nature Communications, 2012, 3, 755.	5.8	47
61	Microautophagy of Cytosolic Proteins by Late Endosomes. Developmental Cell, 2011, 20, 131-139.	3.1	728
62	Microautophagy of Cytosolic Proteins by Late Endosomes. Developmental Cell, 2011, 20, 405-406.	3.1	11
63	Enhanced erythropoiesis in Hfe-KO mice indicates a role for Hfe in the modulation of erythroid iron homeostasis. Blood, 2011, 117, 1379-1389.	0.6	42
64	Control of HBV replication by antiviral microRNAs transferred by lentiviral vectors for potential cell and gene therapy approaches. Antiviral Therapy, 2011, 17, 519-528.	0.6	13
65	Pharmacological postconditioning protects against hepatic ischemia/reperfusion injury. Liver Transplantation, 2011, 17, 474-482.	1.3	40
66	Mechanism of anion selectivity and stoichiometry of the Na ⁺ /I ⁻ symporter (NIS). Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 17933-17938.	3.3	55
67	Hepcidin and Hfe in iron overload in βâ€ŧhalassemia. Annals of the New York Academy of Sciences, 2010, 1202, 221-225.	1.8	21
68	Inhibition of <i>In Vivo</i> HIV Infection in Humanized Mice by Gene Therapy of Human Hematopoietic Stem Cells with a Lentiviral Vector Encoding a Broadly Neutralizing Anti-HIV Antibody. Journal of Virology, 2010, 84, 6645-6653.	1.5	75
69	Dendritic Cell-Mediated In Vivo Bone Resorption. Journal of Immunology, 2010, 185, 1485-1491.	0.4	35
70	Switching of mesodermal and endodermal properties in hTERT-modified and expanded fetal human pancreatic progenitor cells. Stem Cell Research and Therapy, 2010, 1, 6.	2.4	6
71	Hepcidin as a therapeutic tool to limit iron overload and improve anemia in β-thalassemic mice. Journal of Clinical Investigation, 2010, 120, 4466-4477.	3.9	202
72	T Cell Receptor (TCR) Gene Transfer with Lentiviral Vectors Allows Efficient Redirection of Tumor Specificity in Naive and Memory T Cells Without Prior Stimulation of Endogenous TCR. Human Gene Therapy, 2009, 20, 1576-1588.	1.4	34

#	Article	IF	CITATIONS
73	Deletion of the ectodomain unleashes the transforming, invasive, and tumorigenic potential of the <i>MET </i> oncogene. Cancer Science, 2009, 100, 633-638.	1.7	32
74	The endogenous inhibitor of Akt, CTMP, is critical to ischemia-induced neuronal death. Nature Neuroscience, 2009, 12, 618-626.	7.1	98
75	Hepatocyte Transplantation-Induced Liver Inflammation Is Driven by Cytokines-Chemokines Associated With Neutrophils and Kupffer Cells. Gastroenterology, 2009, 136, 1806-1817.	0.6	85
76	EphrinB reverse signaling contributes to endothelial and mural cell assembly into vascular structures. Blood, 2009, 114, 1707-1716.	0.6	99
77	Lentiviral Vectors Encoding Human Immunodeficiency Virus Type 1 (HIV-1)-Specific T-Cell Receptor Genes Efficiently Convert Peripheral Blood CD8 T Lymphocytes into Cytotoxic T Lymphocytes with Potent In Vitro and In Vivo HIV-1-Specific Inhibitory Activity. Journal of Virology, 2008, 82, 3078-3089.	1.5	82
78	Phenotype reversion in fetal human liver epithelial cells identifies the role of an intermediate meso-endodermal stage before hepatic maturation. Journal of Cell Science, 2008, 121, 1002-1013.	1.2	35
79	Dopamine-modified α-synuclein blocks chaperone-mediated autophagy. Journal of Clinical Investigation, 2008, 118, 777-88.	3.9	531
80	Transplanted endothelial cells repopulate the liver endothelium and correct the phenotype of hemophilia A mice. Journal of Clinical Investigation, 2008, 118, 935-45.	3.9	114
81	Increased Hepcidin Expression in Mice Affected by β-Thalassemia Reduces Iron Overload with No Effect on Anemia. Blood, 2008, 112, 128-128.	0.6	4
82	Role of MAPK Phosphatase-1 in Sustained Activation of JNK during Ethanol-induced Apoptosis in Hepatocyte-like VL-17A Cells. Journal of Biological Chemistry, 2007, 282, 31900-31908.	1.6	46
83	Immune Responses to Lentiviral Vectors. Current Gene Therapy, 2007, 7, 306-315.	0.9	87
84	The immune response to lentiviral-delivered transgene is modulated in vivo by transgene-expressing antigen-presenting cells but not by CD4+CD25+ regulatory T cells. Blood, 2007, 110, 1788-1796.	0.6	35
85	Secretion of the Adipocyte-Specific Secretory Protein Adiponectin Critically Depends on Thiol-Mediated Protein Retention. Molecular and Cellular Biology, 2007, 27, 3716-3731.	1.1	275
86	Lentivirusâ€mediated superoxide dismutase1 gene delivery protects against oxidative stressâ€induced liver injury in mice. Liver International, 2007, 27, 1311-1322.	1.9	9
87	Ex vivo gene therapy with lentiviral vectors rescues adenosine deaminase (ADA)–deficient mice and corrects their immune and metabolic defects. Blood, 2006, 108, 2979-2988.	0.6	76
88	Treatment of the mouse model of mucopolysaccharidosis type IIIB with lentiviral-NAGLU vector. Biochemical Journal, 2005, 388, 639-646.	1.7	56
89	RNAi technology and lentiviral delivery as a powerful tool to suppress Tpr-Met-mediated tumorigenesis. Cancer Gene Therapy, 2005, 12, 456-463.	2.2	34
90	The MET oncogene drives a genetic programme linking cancer to haemostasis. Nature, 2005, 434, 396-400.	13.7	245

#	Article	IF	CITATIONS
91	Hepatic targeting of transplanted liver sinusoidal endothelial cells in intact mice. Hepatology, 2005, 42, 140-148.	3.6	42
92	Stability of Lentiviral Vector-Mediated Transgene Expression in the Brain in the Presence of Systemic Antivector Immune Responses. Human Gene Therapy, 2005, 16, 741-751.	1.4	137
93	Erratum to "Lentiviral Vector-Mediated Gene Transfer in T Cells from Wiskott–Aldrich Syndrome Patients Leads to Functional Correctionâ€: Molecular Therapy, 2005, 11, 492.	3.7	0
94	Efficient Tet-Dependent Expression of Human Factor IX in Vivo by a New Self-Regulating Lentiviral Vector. Molecular Therapy, 2005, 11, 763-775.	3.7	61
95	Lentiviral Transduction of Primary Myeloma Cells with CD80 and CD154 Generates Antimyeloma Effector T Cells. Human Gene Therapy, 2005, 16, 445-456.	1.4	5
96	Axons mediate the distribution of arylsulfatase a within the mouse hippocampus upon gene delivery. Molecular Therapy, 2005, 12, 669-679.	3.7	52
97	Robust in vivo gene transfer into adult mammalian neural stem cells by lentiviral vectors. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 14835-14840.	3.3	163
98	Lentiviral Vector-Mediated Gene Transfer in T Cells from Wiskott–Aldrich Syndrome Patients Leads to Functional Correction. Molecular Therapy, 2004, 10, 903-915.	3.7	106
99	The promise of lentiviral gene therapy for liver cancer. Journal of Hepatology, 2004, 40, 337-340.	1.8	19
100	Targeting lentiviral vector expression to hepatocytes limits transgene-specific immune response and establishes long-term expression of human antihemophilic factor IX in mice. Blood, 2004, 103, 3700-3709.	0.6	206
101	Efficiency of Onco-Retroviral and Lentiviral Gene Transfer into Primary Mouse and Human B-Lymphocytes Is Pseudotype Dependent. Human Gene Therapy, 2003, 14, 263-276.	1.4	44
102	Deletion in a (T)8 microsatellite abrogates expression regulation by 3'-UTR. Nucleic Acids Research, 2003, 31, 6561-6569.	6.5	30
103	HIV-Based Vectors: Preparation and Use. , 2002, , 259-274.		44
104	Lentiviral vectors containing the human immunodeficiency virus type-1 central polypurine tract can efficiently transduce nondividing hepatocytes and antigen-presenting cells in vivo. Blood, 2002, 100, 813-822.	0.6	240
105	Correction of mucopolysaccharidosis type IIIb fibroblasts by lentiviral vector-mediated gene transfer. Biochemical Journal, 2002, 364, 747-753.	1.7	20
106	[26] Generation of HIV-1 derived lentiviral vectors. Methods in Enzymology, 2002, 346, 454-465.	0.4	178
107	A Human Immunodeficiency Virus Type 1polGene-Derived Sequence (cPPT/CTS) Increases the Efficiency of Transduction of Human Nondividing Monocytes and T Lymphocytes by Lentiviral Vectors. Human Gene Therapy, 2002, 13, 1793-1807.	1.4	56
108	In vitrogene therapy of mucopolysaccharidosis type I by lentiviral vectors. FEBS Journal, 2002, 269, 2764-2771.	0.2	15

#	Article	IF	CITATIONS
109	HIV-based vectors. Preparation and use. Methods in Molecular Medicine, 2002, 69, 259-74.	0.8	89
110	Gene transfer by lentiviral vectors is limited by nuclear translocation and rescued by HIV-1 pol sequences. Nature Genetics, 2000, 25, 217-222.	9.4	887
111	Biological Activation of pro-HGF (Hepatocyte Growth Factor) by Urokinase Is Controlled by a Stoichiometric Reaction. Journal of Biological Chemistry, 1995, 270, 603-611.	1.6	232

Lentiviral Vectors for Cancer Gene Therapy. , 0, , 83-94.