Rongxin Su

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2288462/publications.pdf

Version: 2024-02-01

305 papers

9,616 citations

53 h-index 78 g-index

315 all docs

315 docs citations

315 times ranked

11674 citing authors

#	Article	IF	CITATIONS
1	Construction of a bioinspired laccase-mimicking nanozyme for the degradation and detection of phenolic pollutants. Applied Catalysis B: Environmental, 2019, 254, 452-462.	10.8	228
2	Facile in Situ Synthesis of Silver Nanoparticles on Procyanidin-Grafted Eggshell Membrane and Their Catalytic Properties. ACS Applied Materials & Samp; Interfaces, 2014, 6, 4638-4649.	4.0	175
3	Ethanol production from high dry matter corncob using fed-batch simultaneous saccharification and fermentation after combined pretreatment. Bioresource Technology, 2010, 101, 4959-4964.	4.8	174
4	Self-assembling peptide–polysaccharide hybrid hydrogel as a potential carrier for drug delivery. Soft Matter, 2011, 7, 6222.	1.2	170
5	Rational Design of Chiral Nanostructures from Self-Assembly of a Ferrocene-Modified Dipeptide. Journal of the American Chemical Society, 2015, 137, 7869-7880.	6.6	170
6	Constructing Redox-Responsive Metal–Organic Framework Nanocarriers for Anticancer Drug Delivery. ACS Applied Materials & Interfaces, 2018, 10, 16698-16706.	4.0	147
7	Integrating enzymatic and acid catalysis to convert glucose into 5-hydroxymethylfurfural. Chemical Communications, 2010, 46, 1115-1117.	2.2	142
8	A polydopamine-modified optical fiber SPR biosensor using electroless-plated gold films for immunoassays. Biosensors and Bioelectronics, 2015, 74, 454-460.	5.3	133
9	Fractionating lignocellulose by formic acid: Characterization of major components. Biomass and Bioenergy, 2010, 34, 525-532.	2.9	126
10	Affinity of rosmarinic acid to human serum albumin and its effect on protein conformation stability. Food Chemistry, 2016, 192, 178-187.	4.2	123
11	Bioconversion of Lignocellulose into Bioethanol: Process Intensification and Mechanism Research. Bioenergy Research, 2011, 4, 225-245.	2.2	117
12	A facile strategy for enzyme immobilization with highly stable hierarchically porous metal–organic frameworks. Nanoscale, 2017, 9, 17561-17570.	2.8	117
13	Grafting Hyaluronic Acid onto Gold Surface to Achieve Low Protein Fouling in Surface Plasmon Resonance Biosensors. ACS Applied Materials & Samp; Interfaces, 2014, 6, 13034-13042.	4.0	116
14	Enhanced photocatalytic degradation of antibiotics in water over functionalized N,S-doped carbon quantum dots embedded ZnO nanoflowers under sunlight irradiation. Chemical Engineering Journal, 2020, 382, 123016.	6.6	116
15	Biomimetic surface coatings for marine antifouling: Natural antifoulants, synthetic polymers and surface microtopography. Science of the Total Environment, 2021, 766, 144469.	3.9	114
16	A carbon dot-based "off–on―fluorescent probe for highly selective and sensitive detection of phytic acid. Biosensors and Bioelectronics, 2015, 70, 232-238.	5.3	107
17	Enhanced Enzymatic Hydrolysis of Lignocellulose by Optimizing Enzyme Complexes. Applied Biochemistry and Biotechnology, 2010, 160, 1407-1414.	1.4	106
18	Rational Design of Mimic Multienzyme Systems in Hierarchically Porous Biomimetic Metal–Organic Frameworks. ACS Applied Materials & Interfaces, 2018, 10, 33407-33415.	4.0	103

#	Article	IF	CITATIONS
19	Superior Antifouling Performance of a Zwitterionic Peptide Compared to an Amphiphilic, Non-Ionic Peptide. ACS Applied Materials & Samp; Interfaces, 2015, 7, 22448-22457.	4.0	101
20	Synthesis of well-dispersed Ag nanoparticles on eggshell membrane for catalytic reduction of 4-nitrophenol. Journal of Materials Science, 2014, 49, 1639-1647.	1.7	100
21	Design and mechanisms of antifouling materials for surface plasmon resonance sensors. Acta Biomaterialia, 2016, 40, 100-118.	4.1	98
22	Reduction of Hexavalent Chromium Using Recyclable Pt/Pd Nanoparticles Immobilized on Procyanidin-Grafted Eggshell Membrane. Industrial & Engineering Chemistry Research, 2014, 53, 13635-13643.	1.8	95
23	Fractional pretreatment of lignocellulose by alkaline hydrogen peroxide: Characterization of its major components. Food and Bioproducts Processing, 2015, 94, 322-330.	1.8	95
24	Solvent and surface controlled self-assembly of diphenylalanine peptide: from microtubes to nanofibers. Soft Matter, 2011, 7, 6418.	1.2	90
25	Porous-CLEAs of papain: Application to enzymatic hydrolysis of macromolecules. Bioresource Technology, 2011, 102, 3541-3545.	4.8	82
26	Biomimetic Bottlebrush Polymer Coatings for Fabrication of Ultralow Fouling Surfaces. Angewandte Chemie - International Edition, 2019, 58, 1308-1314.	7.2	81
27	Selective Synthesis of 2,5-Diformylfuran and 2,5-Furandicarboxylic Acid from 5-Hydroxymethylfurfural and Fructose Catalyzed by Magnetically Separable Catalysts. Energy & Sump; Fuels, 2017, 31, 533-541.	2.5	80
28	High-performance ultrafiltration membranes based on polyethersulfone–graphene oxide composites. RSC Advances, 2013, 3, 21394.	1.7	79
29	Hydrolysis of cellulose by sulfonated magnetic reduced graphene oxide. Chemical Engineering Journal, 2015, 280, 90-98.	6.6	78
30	Optimization and Application of Reflective LSPR Optical Fiber Biosensors Based on Silver Nanoparticles. Sensors, 2015, 15, 12205-12217.	2.1	77
31	Enhancing the Activity of Peptide-Based Artificial Hydrolase with Catalytic Ser/His/Asp Triad and Molecular Imprinting. ACS Applied Materials & Samp; Interfaces, 2016, 8, 14133-14141.	4.0	76
32	Advances in nanocellulose-based materials as adsorbents of heavy metals and dyes. Carbohydrate Polymers, 2021, 272, 118471.	5.1	76
33	Functionalized silica nanoparticles for conversion of fructose to 5-hydroxymethylfurfural. Chemical Engineering Journal, 2016, 296, 209-216.	6.6	75
34	Interaction between lysozyme and procyanidin: Multilevel structural nature and effect of carbohydrates. Food Chemistry, 2013, 138, 1596-1603.	4.2	73
35	Synthesis of silver nanoparticles within cross-linked lysozyme crystals as recyclable catalysts for 4-nitrophenol reduction. Catalysis Science and Technology, 2013, 3, 1910.	2.1	71
36	Self-Assembly of Amphiphilic Janus Particles into Monolayer Capsules for Enhanced Enzyme Catalysis in Organic Media. ACS Applied Materials & Samp; Interfaces, 2015, 7, 465-473.	4.0	71

#	Article	IF	CITATIONS
37	Electrostatic and Aromatic Interaction-Directed Supramolecular Self-Assembly of a Designed Fmoc-Tripeptide into Helical Nanoribbons. Langmuir, 2015, 31, 2885-2894.	1.6	70
38	Interfacial Polymerization of Dopamine in a Pickering Emulsion: Synthesis of Cross-Linkable Colloidosomes and Enzyme Immobilization at Oil/Water Interfaces. ACS Applied Materials & Samp; Interfaces, 2015, 7, 14954-14964.	4.0	69
39	Copper nanocluster-based fluorescent sensors for sensitive and selective detection of kojic acid in food stuff. Sensors and Actuators B: Chemical, 2014, 195, 359-364.	4.0	67
40	Conjugation of Hyaluronic Acid onto Surfaces via the Interfacial Polymerization of Dopamine to Prevent Protein Adsorption. Langmuir, 2015, 31, 12061-12070.	1.6	66
41	Promising Techniques for Depolymerization of Lignin into Valueâ€added Chemicals. ChemCatChem, 2019, 11, 639-654.	1.8	65
42	An effective in-situ method for laccase immobilization: Excellent activity, effective antibiotic removal rate and low potential ecological risk for degradation products. Bioresource Technology, 2020, 308, 123271.	4.8	65
43	Hierarchical, interface-induced self-assembly of diphenylalanine: formation of peptide nanofibers and microvesicles. Nanotechnology, 2011, 22, 245609.	1.3	64
44	Enhanced Ethanol Production from Pomelo Peel Waste by Integrated Hydrothermal Treatment, Multienzyme Formulation, and Fed-Batch Operation. Journal of Agricultural and Food Chemistry, 2014, 62, 4643-4651.	2.4	64
45	Cross-linking enzyme aggregates in the macropores of silica gel: A practical and efficient method for enzyme stabilization. Biochemical Engineering Journal, 2010, 52, 168-174.	1.8	62
46	Temperature-induced reversible self-assembly of diphenylalanine peptide and the structural transition from organogel to crystalline nanowires. Nanoscale Research Letters, 2014, 9, 653.	3.1	62
47	Catalytic Membrane Reactor Immobilized with Alloy Nanoparticle-Loaded Protein Fibrils for Continuous Reduction of 4-Nitrophenol. Environmental Science & Enp; Technology, 2016, 50, 11263-11273.	4.6	61
48	Insulin amyloid fibrillation studied by terahertz spectroscopy and other biophysical methods. Biochemical and Biophysical Research Communications, 2010, 391, 862-867.	1.0	60
49	Preparation of \hat{l}^2 -mannanase CLEAs using macromolecular cross-linkers. Catalysis Science and Technology, 2013, 3, 1937.	2.1	59
50	Preparation of amorphous MOF based biomimetic nanozyme with high laccase- and catecholase-like activity for the degradation and detection of phenolic compounds. Chemical Engineering Journal, 2022, 434, 134677.	6.6	59
51	Superhydrophobic, elastic and anisotropic cellulose nanofiber aerogels for highly effective oil/water separation. Separation and Purification Technology, 2022, 295, 121266.	3.9	59
52	A supramolecular approach to construct a hydrolase mimic with photo-switchable catalytic activity. Journal of Materials Chemistry B, 2018, 6, 2444-2449.	2.9	58
53	Threeâ€dimensionally printed bioinspired superhydrophobic PLA membrane for oilâ€water separation. AICHE Journal, 2018, 64, 3700-3708.	1.8	57
54	Synthesis of superhydrophobic and high stable Zr-MOFs for oil-water separation. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, 602, 125102.	2.3	57

#	Article	IF	CITATIONS
55	Utilization of biodiesel by-product as substrate for high-production of \hat{l}^2 -farnesene via relatively balanced mevalonate pathway in Escherichia coli. Bioresource Technology, 2017, 243, 228-236.	4.8	54
56	Amphiphilic hydrogels for biomedical applications. Journal of Materials Chemistry B, 2019, 7, 2899-2910.	2.9	54
57	Polydopamine-Assisted Surface Coating of MIL-53 and Dodecanethiol on a Melamine Sponge for Oil–Water Separation. Langmuir, 2020, 36, 1212-1220.	1.6	54
58	Preparation of laccase mimicking nanozymes and their catalytic oxidation of phenolic pollutants. Catalysis Science and Technology, 2021, 11, 3402-3410.	2.1	54
59	Construction of biomimetic nanozyme with high laccase- and catecholase-like activity for oxidation and detection of phenolic compounds. Journal of Hazardous Materials, 2022, 429, 128404.	6.5	54
60	Deciphering the binding patterns and conformation changes upon the bovine serum albumin–rosmarinic acid complex. Food and Function, 2015, 6, 2712-2726.	2.1	53
61	Aromatic Motifs Dictate Nanohelix Handedness of Tripeptides. ACS Nano, 2018, 12, 12305-12314.	7.3	53
62	Controllable synthesis of ZnO nanoflowers with structure-dependent photocatalytic activity. Catalysis Today, 2020, 355, 397-407.	2.2	53
63	3D Flower-like Micro/Nano Ce–Mo Composite Oxides as Effective Bifunctional Catalysts for One-Pot Conversion of Fructose to 2,5-Diformylfuran. ACS Sustainable Chemistry and Engineering, 2017, 5, 4179-4187.	3.2	52
64	Highly Efficient Catalysis of Azo Dyes Using Recyclable Silver Nanoparticles Immobilized on Tannic Acid-Grafted Eggshell Membrane. Nanoscale Research Letters, 2016, 11, 440.	3.1	50
65	Bioinspired Peptide-Coated Superhydrophilic Poly(vinylidene fluoride) Membrane for Oil/Water Emulsion Separation. Langmuir, 2018, 34, 6621-6627.	1.6	50
66	Highly efficient and selective production of FFCA from CotA-TJ102 laccase-catalyzed oxidation of 5-HMF. International Journal of Biological Macromolecules, 2019, 128, 132-139.	3.6	50
67	CoMFA and CoMSIA analysis of ACE-inhibitory, antimicrobial and bitter-tasting peptides. European Journal of Medicinal Chemistry, 2014, 84, 100-106.	2.6	49
68	Dopamine-assisted deposition and zwitteration of hyaluronic acid for the nanoscale fabrication of low-fouling surfaces. Journal of Materials Chemistry B, 2016, 4, 4084-4091.	2.9	48
69	Effect of Formic Acid on Conversion of Fructose to 5-Hydroxymethylfurfural in Aqueous/Butanol Media. Bioenergy Research, 2012, 5, 380-386.	2.2	46
70	Cross-linked lysozyme crystal templated synthesis of Au nanoparticles as high-performance recyclable catalysts. Nanotechnology, 2013, 24, 245601.	1.3	46
71	Kinetically controlled self-assembly of redox-active ferrocene–diphenylalanine: from nanospheres to nanofibers. Nanotechnology, 2013, 24, 465603.	1.3	46
72	Multilevel structural nature and interactions of bovine serum albumin during heat-induced aggregation process. Food Hydrocolloids, 2008, 22, 995-1005.	5.6	45

#	Article	IF	CITATIONS
73	Advances in carrier-bound and carrier-free immobilized nanobiocatalysts. Chemical Engineering Science, 2015, 135, 21-32.	1.9	42
74	Oriented Enzyme Immobilization at the Oil/Water Interface Enhances Catalytic Activity and Recyclability in a Pickering Emulsion. Langmuir, 2017, 33, 12317-12325.	1.6	42
75	Controlled adsorption of cellulase onto pretreated corncob by pH adjustment. Cellulose, 2012, 19, 371-380.	2.4	41
76	A casein-polysaccharide hybrid hydrogel cross-linked by transglutaminase for drug delivery. Journal of Materials Science, 2012, 47, 2045-2055.	1.7	41
77	Rationally Designed Peptidyl Virusâ€Like Particles Enable Targeted Delivery of Genetic Cargo. Angewandte Chemie - International Edition, 2018, 57, 14032-14036.	7.2	41
78	Self-Assembly of Peptide Hierarchical Helical Arrays with Sequence-Encoded Circularly Polarized Luminescence. Nano Letters, 2021, 21, 6406-6415.	4.5	41
79	Chiral self-assembly of peptides: Toward the design of supramolecular polymers with enhanced chemical and biological functions. Progress in Polymer Science, 2021, 123, 101469.	11.8	39
80	Understanding the key factors for enzymatic conversion of pretreated lignocellulose by partial least square analysis. Biotechnology Progress, 2010, 26, 384-392.	1.3	37
81	Enhancement of activity of cross-linked enzyme aggregates by a sugar-assisted precipitation strategy: Technical development and molecular mechanism. Journal of Biotechnology, 2011, 156, 30-38.	1.9	37
82	Reconfigurable Chiral Selfâ€Assembly of Peptides through Control of Terminal Charges. Small, 2017, 13, 1700999.	5.2	37
83	Columnar Liquid Crystals Self-Assembled by Minimalistic Peptides for Chiral Sensing and Synthesis of Ordered Mesoporous Silica. Chemistry of Materials, 2018, 30, 7902-7911.	3.2	37
84	Biomineralization-inspired copper-cystine nanoleaves capable of laccase-like catalysis for the colorimetric detection of epinephrine. Frontiers of Chemical Science and Engineering, 2021, 15, 310-318.	2.3	37
85	Highly selective reductive catalytic fractionation at atmospheric pressure without hydrogen. Green Chemistry, 2021, 23, 1648-1657.	4.6	37
86	Laccase-catalyzed soy protein and gallic acid complexation: Effects on conformational structures and antioxidant activity. Food Chemistry, 2022, 375, 131865.	4.2	37
87	Glucomannan-mediated facile synthesis of gold nanoparticles for catalytic reduction of 4-nitrophenol. Nanoscale Research Letters, 2014, 9, 404.	3.1	36
88	One-pot synthesis of mercapto functionalized Zr-MOFs for the enhanced removal of Hg ²⁺ ions from water. Chemical Communications, 2019, 55, 6775-6778.	2.2	36
89	Calcium-lon-Triggered Co-assembly of Peptide and Polysaccharide into a Hybrid Hydrogel for Drug Delivery. Nanoscale Research Letters, 2016, 11, 184.	3.1	35
90	Molecularly Imprinted Core-Shell CdSe@SiO2/CDs as a Ratiometric Fluorescent Probe for 4-Nitrophenol Sensing. Nanoscale Research Letters, 2018, 13, 27.	3.1	35

#	Article	IF	Citations
91	Construction of luffa sponge-based magnetic carbon nanocarriers for laccase immobilization and its application in the removal of bisphenol A. Bioresource Technology, 2020, 305, 123085.	4.8	35
92	Synergy between Zwitterionic Polymers and Hyaluronic Acid Enhances Antifouling Performance. Langmuir, 2019, 35, 15535-15542.	1.6	34
93	Sandwich-Like Sensor for the Highly Specific and Reproducible Detection of Rhodamine 6G on a Surface-Enhanced Raman Scattering Platform. ACS Applied Materials & Samp; Interfaces, 2020, 12, 4699-4706.	4.0	34
94	Controllable synthesis of a sponge-like Z-scheme N,S-CQDs/Bi2MoO6@TiO2 film with enhanced photocatalytic and antimicrobial activity under visible/NIR light irradiation. Journal of Hazardous Materials, 2022, 429, 128310.	6.5	34
95	Physicochemical Strategies for Inhibition of Amyloid Fibril Formation: An Overview of Recent Advances. Current Medicinal Chemistry, 2012, 19, 4157-4174.	1.2	33
96	Bioinspired fabrication of optical fiber SPR sensors for immunoassays using polydopamine-accelerated electroless plating. Journal of Materials Chemistry C, 2016, 4, 7554-7562.	2.7	33
97	Interactions between Lubricin and Hyaluronic Acid Synergistically Enhance Antiadhesive Properties. ACS Applied Materials & Interfaces, 2019, 11, 18090-18102.	4.0	33
98	Green fluorescent protein inspired fluorophores. Advances in Colloid and Interface Science, 2020, 285, 102286.	7.0	33
99	Microfluidic Synthesis of Lignin/Chitosan Nanoparticles for the pH-Responsive Delivery of Anticancer Drugs. Langmuir, 2021, 37, 7219-7226.	1.6	33
100	Simultaneous production of multi-functional peptides by pancreatic hydrolysis of bovine casein in an enzymatic membrane reactor via combinational chromatography. Food Chemistry, 2013, 141, 2944-2951.	4.2	32
101	Gold Nanoparticle-Aptamer-Based LSPR Sensing of Ochratoxin A at a Widened Detection Range by Double Calibration Curve Method. Frontiers in Chemistry, 2018, 6, 94.	1.8	32
102	Structures and Antifouling Properties of Self-Assembled Zwitterionic Peptide Monolayers: Effects of Peptide Charge Distributions and Divalent Cations. Biomacromolecules, 2020, 21, 2087-2095.	2.6	32
103	Bioinspired Phosphatase-like Mimic Built from the Self-Assembly of De Novo Designed Helical Short Peptides. ACS Catalysis, 2021, 11, 5839-5849.	5.5	32
104	Pancreatic hydrolysis of bovine casein: Identification and release kinetics of phosphopeptides. Food Chemistry, 2007, 104, 276-286.	4.2	31
105	Green Synthesis of a Gold Nanoparticle–Nanocluster Composite Nanostructures Using Trypsin as Linking and Reducing Agents. ACS Sustainable Chemistry and Engineering, 2013, 1, 1398-1404.	3.2	31
106	Recycling cellulases by pH-triggered adsorption-desorption during the enzymatic hydrolysis of lignocellulosic biomass. Applied Microbiology and Biotechnology, 2014, 98, 5765-5774.	1.7	31
107	Capillary Forceâ€Driven, Hierarchical Coâ€Assembly of Dandelionâ€Like Peptide Microstructures. Small, 2015, 11, 2893-2902.	5 . 2	31
108	Cascade catalysis via dehydration and oxidation: one-pot synthesis of 2,5-diformylfuran from fructose using acid and V ₂ O ₅ /ceramic catalysts. RSC Advances, 2017, 7, 7560-7566.	1.7	31

#	Article	IF	CITATIONS
109	Mechanistic and conformational studies on the interaction of human serum albumin with rhodamine B by NMR, spectroscopic and molecular modeling methods. Journal of Molecular Liquids, 2020, 316, 113889.	2.3	31
110	Tunable Design of Structural Colors Produced by Pseudoâ€1D Photonic Crystals of Graphene Oxide. Small, 2016, 12, 3433-3443.	5.2	30
111	Design of elution strategy for simultaneous detection of chloramphenicol and gentamicin in complex samples using surface plasmon resonance. Biosensors and Bioelectronics, 2017, 92, 266-272.	5. 3	30
112	High-efficiency and low-cost production of cadaverine from a permeabilized-cell bioconversion by a Lysine-induced engineered Escherichia coli. Bioresource Technology, 2020, 302, 122844.	4.8	29
113	Lipase immobilized on novel ceramic supporter with Ni activation for efficient cinnamyl acetate synthesis. Journal of Molecular Catalysis B: Enzymatic, 2014, 110, 32-38.	1.8	27
114	Cinnamyl acetate synthesis by lipaseâ€catalyzed transesterification in a solventâ€free system. Biotechnology and Applied Biochemistry, 2012, 59, 270-275.	1.4	26
115	Greener production of cellulose nanocrystals: An optimised design and life cycle assessment. Journal of Cleaner Production, 2022, 345, 131073.	4.6	26
116	Elucidating the Influence of Gold Nanoparticles on the Binding of Salvianolic Acid B and Rosmarinic Acid to Bovine Serum Albumin. PLoS ONE, 2015, 10, e0118274.	1.1	25
117	Biomimetic Bottlebrush Polymer Coatings for Fabrication of Ultralow Fouling Surfaces. Angewandte Chemie, 2019, 131, 1322-1328.	1.6	25
118	Construction of a Mercapto-Functionalized Zr-MOF/Melamine Sponge Composite for the Efficient Removal of Oils and Heavy Metal Ions from Water. Industrial & Engineering Chemistry Research, 2020, 59, 13220-13227.	1.8	25
119	Purification, characterization, and production of \hat{l}^2 -mannanase from Bacillus subtilis TJ-102 and its application in gluco-mannooligosaccharides preparation. European Food Research and Technology, 2013, 237, 399-408.	1.6	24
120	Detection of tubule boundaries based on circular shortest path and polarâ€transformation of arbitrary shapes. Journal of Microscopy, 2016, 264, 127-142.	0.8	24
121	Bioorganometallic ferrocene-tripeptide nanoemulsions. Nanoscale, 2017, 9, 15323-15331.	2.8	24
122	Chelate immobilization of amylase on metal ceramic powder: Preparation, characterization and application. Biochemical Engineering Journal, 2013, 77, 190-197.	1.8	23
123	Green synthesis of gold nanoparticles using aspartame and their catalytic activity for p-nitrophenol reduction. Nanoscale Research Letters, 2015, 10, 213.	3.1	23
124	Frontiers in process development, integration and intensification for circular life cycles and reduced emissions. Journal of Cleaner Production, 2018, 201, 178-191.	4.6	23
125	Self-Assembled Microporous Peptide-Polysaccharide Aerogels for Oil–Water Separation. Langmuir, 2018, 34, 10732-10738.	1.6	23
126	Molecularly imprinted peptide-based enzyme mimics with enhanced activity and specificity. Soft Matter, 2020, 16, 7033-7039.	1.2	23

#	Article	IF	CITATIONS
127	Enzymatic saccharification of pretreated corn stover in a fed-batch membrane bioreactor. Bioenergy Research, 2011, 4, 134-140.	2.2	22
128	Enzymatic hydrolysis of lignocellulose: SEC-MALLS analysis and reaction mechanism. RSC Advances, 2013, 3, 1871-1877.	1.7	22
129	Integrating chromium-based ceramic and acid catalysis to convert glucose into 5-hydroxymethylfurfural. Renewable Energy, 2018, 125, 327-333.	4.3	22
130	Improved conversion efficiency of Lignin-to-Fuel conversion by limiting catalyst deactivation. Chemical Engineering Journal, 2021, 410, 128270.	6.6	22
131	Pancreatic hydrolysis of bovine casein: Peptide release and time-dependent reaction behavior. Food Chemistry, 2012, 133, 851-858.	4.2	21
132	Sensitive and Efficient Electrochemical Determination of Kojic Acid in Foodstuffs Based on Graphene-Pt Nanocomposite-Modified Electrode. Food Analytical Methods, 2014, 7, 109-115.	1.3	21
133	Recyclable Strategy for the Production of High-Purity Galacto-oligosaccharides by <i>Kluyveromyces lactis</i> . Journal of Agricultural and Food Chemistry, 2016, 64, 5679-5685.	2.4	21
134	Three-Dimensionally Printed Bioinspired Superhydrophobic Packings for Oil-in-Water Emulsion Separation. Langmuir, 2019, 35, 12799-12806.	1.6	21
135	Chiral photonic materials self-assembled by cellulose nanocrystals. Current Opinion in Solid State and Materials Science, 2022, 26, 101017.	5.6	21
136	Exploration of Intrinsic Lipase-Like Activity of Zirconium-Based Metal-Organic Frameworks. European Journal of Inorganic Chemistry, 2018, 2018, 4579-4585.	1.0	20
137	Rational design of a thermophilic \hat{l}^2 -mannanase fromBacillus subtilis TJ-102 to improve its thermostability. Enzyme and Microbial Technology, 2018, 118, 50-56.	1.6	20
138	Tannic acid-assisted fabrication of Fe-Pd nanoparticles for stable rapid dechlorination of two organochlorides. Chemical Engineering Journal, 2018, 352, 716-721.	6.6	20
139	Fluorescent silicon nanoparticles inhibit the amyloid fibrillation of insulin. Journal of Materials Chemistry B, 2019, 7, 1397-1403.	2.9	20
140	Role of molecular chirality and solvents in directing the self-assembly of peptide into an ultra-pH-sensitive hydrogel. Journal of Colloid and Interface Science, 2020, 577, 388-396.	5.0	20
141	Structure-tunable assembly of lignin sub-micro spheres by modifying the amphiphilic interfaces of lignin via n-alkane. European Polymer Journal, 2020, 126, 109539.	2.6	20
142	Synergistic effect of polystyrene nanoplastics and contaminants on the promotion of insulin fibrillation. Ecotoxicology and Environmental Safety, 2021, 214, 112115.	2.9	20
143	Shape evolution and thermal stability of lysozyme crystals: effect of pH and temperature. Bioprocess and Biosystems Engineering, 2013, 36, 91-99.	1.7	19
144	Study of the Interaction Between Coenzyme Q10 and Human Serum Albumin: Spectroscopic Approach. Journal of Solution Chemistry, 2014, 43, 585-607.	0.6	19

#	Article	IF	Citations
145	Jet flow directed supramolecular self-assembly at aqueous liquid–liquid interface. RSC Advances, 2014, 4, 15340.	1.7	19
146	Utilization of whey powder as substrate for low-cost preparation of \hat{l}^2 -galactosidase as main product, and ethanol as by-product, by a litre-scale integrated process. Bioresource Technology, 2017, 245, 1271-1276.	4.8	19
147	Bioinspired pH-Sensitive Fluorescent Peptidyl Nanoparticles for Cell Imaging. ACS Applied Materials & Lamp; Interfaces, 2020, 12, 4212-4220.	4.0	19
148	Pancreatic hydrolysis of bovine casein: Changes in the aggregate size and molecular weight distribution. Food Chemistry, 2008, 107, 151-157.	4.2	18
149	Ethanol Production from High-Solid SSCF of Alkaline-Pretreated Corncob Using Recombinant Zymomonas mobilis CP4. Bioenergy Research, 2013, 6, 292-299.	2.2	18
150	Facile method to synthesize graphene-ZnS nanocomposites: preparation and application in bioelectrochemistry of hemoglobin. Journal of Solid State Electrochemistry, 2013, 17, 2595-2602.	1.2	18
151	Changes in the supramolecular structures of cellulose after hydrolysis studied by terahertz spectroscopy and other methods. RSC Advances, 2014, 4, 57945-57952.	1.7	18
152	Long-range ordered graphite oxide liquid crystals. Chemical Communications, 2014, 50, 7776-7779.	2.2	18
153	"One-pot―conversions of carbohydrates to 5-hydroxymethylfurfural using Sn-ceramic powder and hydrochloric acid. Catalysis Today, 2018, 302, 94-99.	2.2	18
154	Real-time adsorption and action of expansin on cellulose. Biotechnology for Biofuels, 2018, 11, 317.	6.2	18
155	Synthesis of 2,5-diformylfuran from 5-hydroxymethylfurfural in ethyl acetate using 4-acetamido-TEMPO as a recyclable catalyst. Catalysis Today, 2019, 319, 121-127.	2.2	18
156	Three-dimensional printing of black phosphorous/polypyrrole electrode for energy storage using thermoresponsive ink. Chemical Communications, 2020, 56, 3115-3118.	2.2	18
157	Pepsin-Induced Changes in the Size and Molecular Weight Distribution of Bovine Casein During Enzymatic Hydrolysis. Journal of Dairy Science, 2007, 90, 5004-5011.	1.4	17
158	Production enhancement of 5â€hydroxymethyl furfural from fructose via mechanical stirring control and highâ€fructose solution addition. Journal of Chemical Technology and Biotechnology, 2014, 89, 56-64.	1.6	17
159	Enzymeâ€"substrate interactions promote the self-assembly of amino acid derivatives into supramolecular hydrogels. Journal of Materials Chemistry B, 2016, 4, 844-851.	2.9	17
160	Peptideâ€Templated Synthesis of TiO ₂ Nanofibers with Tunable Photocatalytic Activity. Chemistry - A European Journal, 2018, 24, 18123-18129.	1.7	17
161	Photoâ€Induced Polymerization and Reconfigurable Assembly of Multifunctional Ferroceneâ€Tyrosine. Small, 2018, 14, e1800772.	5.2	17
162	Disulfide crosslinking and helical coiling of peptide micelles facilitate the formation of a printable hydrogel. Journal of Materials Chemistry B, 2019, 7, 2981-2988.	2.9	17

#	Article	IF	Citations
163	Ferrocene-modified peptides as inhibitors against insulin amyloid aggregation based on molecular simulation. Journal of Materials Chemistry B, 2020, 8, 3076-3086.	2.9	17
164	Effect of Hydrophobicity and Charge Separation on the Antifouling Properties of Surface-Tethered Zwitterionic Peptides. Langmuir, 2021, 37, 8455-8462.	1.6	17
165	Circularly Polarized Luminescent Chiral Photonic Films Based on the Coassembly of Cellulose Nanocrystals and Gold Nanoclusters. Langmuir, 2022, 38, 4147-4155.	1.6	17
166	Enhanced enzymatic hydrolysis of lignocellulose by integrated decrystallization and fed-batch operation. RSC Advances, 2014, 4, 44659-44665.	1.7	16
167	Magnetic–fluorescent nanocomposites as reusable fluorescence probes for sensitive detection of hydrogen peroxide and glucose. Analytical Methods, 2014, 6, 6352-6357.	1.3	16
168	Superior Catalytic Performance of Gold Nanoparticles Within Small Cross-Linked Lysozyme Crystals. Langmuir, 2016, 32, 10895-10904.	1.6	16
169	Enhanced enzymatic hydrolysis of corncob by ultrasound-assisted soaking in aqueous ammonia pretreatment. 3 Biotech, 2018, 8, 166.	1.1	16
170	Real-Time Adsorption of Exo- and Endoglucanases on Cellulose: Effect of pH, Temperature, and Inhibitors. Langmuir, 2018, 34, 13514-13522.	1.6	16
171	Self-assembly of multifunctional hydrogels with polyoxometalates helical arrays using nematic peptide liquid crystal template. Journal of Colloid and Interface Science, 2020, 578, 218-228.	5.0	16
172	Zwitterionic Peptide Enhances Protein-Resistant Performance of Hyaluronic Acid-Modified Surfaces. Langmuir, 2020, 36, 1923-1929.	1.6	16
173	Co-assembly of curcumin and a cystine bridged peptide to construct tumor-responsive nano-micelles for efficient chemotherapy. Journal of Materials Chemistry B, 2020, 8, 1944-1951.	2.9	16
174	Scissor-based fluorescent detection of pepsin using lysozyme-stabilized Au nanoclusters. Analytical Methods, 2014, 6, 6789-6795.	1.3	15
175	Development of a novel integrated process for co-production of \hat{l}^2 -galactosidase and ethanol using lactose as substrate. Bioresource Technology, 2017, 230, 15-23.	4.8	15
176	Effects of macromolecular crowding on alkaline phosphatase unfolding, conformation and stability. International Journal of Biological Macromolecules, 2017, 101, 373-382.	3.6	15
177	Highly efficient production of FAMEs and \hat{l}^2 -farnesene from a two-stage biotransformation of waste cooking oils. Energy Conversion and Management, 2019, 199, 112001.	4.4	15
178	Constructing peptide-based artificial hydrolases with customized selectivity. Journal of Materials Chemistry B, 2019, 7, 3804-3810.	2.9	15
179	Continuous rapid dechlorination of p-chlorophenol by Fe-Pd nanoparticles promoted by procyanidin. Chemical Engineering Science, 2019, 201, 121-131.	1.9	15
180	Photo- and Aromatic Stacking-Induced Green Emissive Peptidyl Nanoparticles for Cell Imaging and Monitoring of Nucleic Acid Delivery. ACS Applied Materials & Samp; Interfaces, 2019, 11, 15401-15410.	4.0	15

#	Article	IF	CITATIONS
181	Investigation of fermentation conditions of biodiesel by-products for high production of \hat{l}^2 -farnesene by an engineered Escherichia coli. Environmental Science and Pollution Research, 2020, 27, 22758-22769.	2.7	15
182	A tumor-sensitive biological metal–organic complex for drug delivery and cancer therapy. Journal of Materials Chemistry B, 2020, 8, 7189-7196.	2.9	15
183	Self-Templated, Enantioselective Assembly of an Amyloid-like Dipeptide into Multifunctional Hierarchical Helical Arrays. ACS Nano, 2021, 15, 9827-9840.	7.3	15
184	One-pot synthesis of fluorine functionalized Zr-MOFs and their in situ growth on sponge for oil absorption. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 616, 126322.	2.3	15
185	High chloroform removal using tannic acid to promote the activation of persulfate with Fe/Ni nanoparticles. Environmental Chemistry Letters, 2021, 19, 4015-4020.	8.3	15
186	Lubricin-Inspired Loop Zwitterionic Peptide for Fabrication of Superior Antifouling Surfaces. ACS Applied Materials & Samp; Interfaces, 2021, 13, 41978-41986.	4.0	15
187	Adsorption–Desorption Behavior of Black Phosphorus Quantum Dots on Mucin Surface. Langmuir, 2018, 34, 8508-8515.	1.6	14
188	Recycling Strategy and Repression Elimination for Lignocellulosic-Based Farnesene Production with an Engineered <i>Escherichia coli</i> <io>li>. Journal of Agricultural and Food Chemistry, 2019, 67, 9858-9867.</io>	2.4	14
189	Bioinspired Fluorescent Peptidyl Nanoparticles with Rainbow Colors. ACS Applied Materials & Samp; Interfaces, 2020, 12, 31830-31841.	4.0	14
190	Synergy between endo/exo-glucanases and expansin enhances enzyme adsorption and cellulose conversion. Carbohydrate Polymers, 2021, 253, 117287.	5.1	14
191	Alizarin and Purpurin from <i>Rubia tinctorum</i> L. Suppress Insulin Fibrillation and Reduce the Amyloid-Induced Cytotoxicity. ACS Chemical Neuroscience, 2021, 12, 2182-2193.	1.7	14
192	Chirality-Dependent Copper–Diphenylalanine Assemblies with Tough Layered Structure and Enhanced Catalytic Performance. ACS Nano, 2022, 16, 6866-6877.	7.3	14
193	Time-dependent nature in peptic hydrolysis of native bovine hemoglobin. European Food Research and Technology, 2007, 225, 637-647.	1.6	13
194	Kinetically controlled enzymatic synthesis of dipeptide precursor of <scp>l</scp> â€alanyl– <scp>l</scp> â€glutamine. Biotechnology and Applied Biochemistry, 2011, 58, 449-455.	1.4	13
195	Structural Insight into Stabilization of Pickering Emulsions with Fe ₃ O ₄ @SiO ₂ Nanoparticles for Enzyme Catalysis in Organic Media. Particle and Particle Systems Characterization, 2017, 34, 1700117.	1.2	13
196	Tandem Biocatalysis by CotA-TJ102@UIO-66-NH2 and Novozym 435 for Highly Selective Transformation of HMF into FDCA. Transactions of Tianjin University, 2019, 25, 488-496.	3.3	13
197	Nontoxic Black Phosphorus Quantum Dots Inhibit Insulin Amyloid Fibrillation at an Ultralow Concentration. IScience, 2020, 23, 101044.	1.9	13
198	An effective and green method for the extraction and purification of aglycone isoflavones from soybean. Food Science and Biotechnology, 2013, 22, 705-712.	1.2	12

#	Article	IF	Citations
199	Co-optimization of sugar yield and input energy by the stepwise reduction of agitation rate during lignocellulose hydrolysis. Food and Bioproducts Processing, 2015, 95, 1-6.	1.8	12
200	Multimodal Miniature Surface Forces Apparatus (\hat{l} 4SFA) for Interfacial Science Measurements. Langmuir, 2019, 35, 15500-15514.	1.6	12
201	Tannic acid enhances the removal of chloroform from water using NaOH-activated persulfate. Environmental Chemistry Letters, 2020, 18, 1441-1446.	8.3	12
202	Control of peptide hydrogel formation and stability via heating treatment. Journal of Colloid and Interface Science, 2021, 583, 234-242.	5.0	12
203	Counterionâ€Directed, Structurally Tunable Assembly of Hydrogels, Membranes, and Sacs at Aqueous Liquid–Liquid Interfaces. Advanced Materials Interfaces, 2016, 3, 1500327.	1.9	11
204	Migration of photoinitiators from paper to fatty food simulants: experimental studies and model application. Food Additives and Contaminants - Part A Chemistry, Analysis, Control, Exposure and Risk Assessment, 2016, 33, 876-884.	1.1	11
205	Enhanced cellulase recovery without βâ€glucosidase supplementation for cellulosic ethanol production using an engineered strain and surfactant. Biotechnology and Bioengineering, 2017, 114, 543-551.	1.7	11
206	Migration of phthalates from polyvinyl chloride film to fatty food simulants: experimental studies and model application. Journal Fur Verbraucherschutz Und Lebensmittelsicherheit, 2020, 15, 135-143.	0.5	11
207	Ferrocene-Modified Metal–Organic Frameworks as a Peroxidase-Mimicking Catalyst. Catalysis Letters, 2021, 151, 478-486.	1.4	11
208	Bifunctional utilization of whey powder as a substrate and inducer for \hat{l}^2 -farnesene production in an engineered Escherichia coli. Bioresource Technology, 2021, 341, 125739.	4.8	11
209	Copper ions binding regulation for the high-efficiency biodegradation of ciprofloxacin and tetracycline-HCl by low-cost permeabilized-cells. Bioresource Technology, 2022, 344, 126297.	4.8	11
210	Comparative QSAR modeling of antitumor activity of ARC-111 analogues using stepwise MLR, PLS, and ANN techniques. Medicinal Chemistry Research, 2010, 19, 1233-1244.	1.1	10
211	Enzymatic Hydrolysis of Cellulose with Different Crystallinities Studied by Means of SEC-MALLS. Chinese Journal of Chemical Engineering, 2011, 19, 773-778.	1.7	10
212	Adsorptive removal of Ni(<scp>ii</scp>) ions from aqueous solution and the synthesis of a Ni-doped ceramic: an efficient enzyme carrier exhibiting enhanced activity of immobilized lipase. RSC Advances, 2016, 6, 64581-64588.	1.7	10
213	Co-assembly of Fmoc-tripeptide and gold nanoparticles as a facile approach to immobilize nanocatalysts. RSC Advances, 2017, 7, 15736-15741.	1.7	10
214	Selfâ€Assembly of Ferrocene Peptides: A Nonheme Strategy to Construct a Peroxidase Mimic. Advanced Materials Interfaces, 2019, 6, 1901082.	1.9	10
215	<i>In situ</i> fabrication of multifunctional gold–amino acid superstructures based on self-assembly. Chemical Communications, 2019, 55, 3967-3970.	2.2	10
216	Efficient removal of chloroform in groundwater by polyethylene glycol-stabilized Fe/Ni nanoparticles. Environmental Chemistry Letters, 2021, 19, 3511-3515.	8.3	10

#	Article	IF	Citations
217	Colorful Pigments for Hair Dyeing Based on Enzymatic Oxidation of Tyrosine Derivatives. ACS Applied Materials & Samp; Interfaces, 2021, 13, 34851-34864.	4.0	10
218	PREPARATION AND ACTIVITY OF BUBBLING-IMMOBILIZED CELLOBIASE WITHIN CHITOSAN-ALGINATE COMPOSITE. Preparative Biochemistry and Biotechnology, 2009, 40, 57-64.	1.0	9
219	Describing some characters of serine proteinase using fractal analysis. Chaos, Solitons and Fractals, 2012, 45, 1017-1023.	2.5	9
220	Self-assembled oligomeric procyanidin–insulin hybrid nanoparticles: a novel strategy for controllable insulin delivery. Biomaterials Science, 2013, 1, 834.	2.6	9
221	Chemical catalysis triggered self-assembly for the bottom-up fabrication of peptide nanofibers and hydrogels. Materials Letters, 2014, 128, 216-219.	1.3	9
222	Alginate-casein microspheres as bioactive vehicles for nutrients. Transactions of Tianjin University, 2015, 21, 383-391.	3.3	9
223	Reducing \hat{l}^2 -glucosidase supplementation during cellulase recovery using engineered strain for successive lignocellulose bioconversion. Bioresource Technology, 2015, 187, 362-368.	4.8	9
224	Interaction of particles with mucosae and cell membranes. Colloids and Surfaces B: Biointerfaces, 2020, 186, 110657.	2.5	9
225	A combined strategy of metabolic pathway regulation and two-step bioprocess for improved 4-androstene-3,17-dione production with an engineered Mycobacterium neoaurum. Biochemical Engineering Journal, 2020, 164, 107789.	1.8	9
226	Fabrication of nanohybrids assisted by protein-based materials for catalytic applications. Catalysis Science and Technology, 2020, 10, 3515-3531.	2.1	9
227	Development of an integrated process for the production of highâ€purity cadaverine from lysine decarboxylase. Journal of Chemical Technology and Biotechnology, 2020, 95, 1542-1549.	1.6	9
228	Preparation and Characterization of Enzyme-Modified Konjac Glucomannan/Xanthan Blend Films. Journal of Biomaterials Science, Polymer Edition, 2009, 20, 299-310.	1.9	8
229	Ethanol From Corn Stover Using SSF: An Economic Assessment. Energy Sources, Part B: Economics, Planning and Policy, 2011, 6, 136-144.	1.8	8
230	Enhanced electrochemical detection performance of multiwall carbon nanotubes functionalized by aspartame. Journal of Materials Science, 2013, 48, 5624-5632.	1.7	8
231	Interactions of Fly Ash Particles with Mucin and Serum Albumin. Langmuir, 2018, 34, 12251-12258.	1.6	8
232	Real-Time QCM-D Monitoring of Deposition of Gold Nanorods on a Supported Lipid Bilayer as a Model Cell Membrane. ACS Omega, 2019, 4, 6059-6067.	1.6	8
233	<i>In situ</i> growth of Au–Ag bimetallic nanorings on optical fibers for enhanced plasmonic sensing. Journal of Materials Chemistry C, 2020, 8, 7552-7560.	2.7	8
234	Effect of Sugars on the Real-Time Adsorption of Expansin on Cellulose. Biomacromolecules, 2020, 21, 1776-1784.	2.6	8

#	Article	IF	CITATIONS
235	Real-Time QCM-D Monitoring of the Adsorption–Desorption of Expansin on Lignin. Langmuir, 2020, 36, 4503-4510.	1.6	8
236	Short-Sequence Superadhesive Peptides with Topologically Enhanced Cationâ^Ï€ Interactions. Chemistry of Materials, 2021, 33, 5168-5176.	3.2	8
237	Rational design of $17\hat{l}^2$ -hydroxysteroid dehydrogenase type3 for improving testosterone production with an engineered Pichia pastoris. Bioresource Technology, 2021, 341, 125833.	4.8	8
238	The Optimization of Fractionating Lignocellulose by Formic Acid Using Response Surface Methodology. Energy Sources, Part A: Recovery, Utilization and Environmental Effects, 2010, 32, 1282-1292.	1.2	7
239	Photo-induced inhibition of insulin amyloid fibrillation on online laser measurement. Biochemical and Biophysical Research Communications, 2011, 409, 229-234.	1.0	7
240	Backbone fractal dimension and fractal hybrid orbital of protein structure. Communications in Nonlinear Science and Numerical Simulation, 2013, 18, 3373-3381.	1.7	7
241	Cellulase Recycling after High-Solids Simultaneous Saccharification and Fermentation of Combined Pretreated Corncob. Frontiers in Energy Research, 2014, 2, .	1.2	7
242	Noncovalent functionalization of graphene by CdS nanohybrids for electrochemical applications. Thin Solid Films, 2014, 568, 58-62.	0.8	7
243	A gas-phase amplified quartz crystal microbalance immunosensor based on catalase modified immunoparticles. Analyst, The, 2015, 140, 1174-1181.	1.7	7
244	Optimisation of culture conditions and development of a novel fedâ \in batch strategy for high production of $\hat{l}^2\hat{a}\in$ galactosidase by <i>Kluyveromyces lactis</i> . International Journal of Food Science and Technology, 2017, 52, 1887-1893.	1.3	7
245	A light-responsive multienzyme complex combining cascade enzymes within a peptide-based matrix. RSC Advances, 2018, 8, 6047-6052.	1.7	7
246	Design of Silica Nanostructures with Tunable Architectures Templated by Ferrocene Peptides. ChemistrySelect, 2018, 3, 4939-4943.	0.7	7
247	Poly (\hat{I}^3 -Glutamic Acid) Promotes Enhanced Dechlorination of p-Chlorophenol by Fe-Pd Nanoparticles. Nanoscale Research Letters, 2018, 13, 219.	3.1	7
248	Self-Assembly of Peptide Chiral Nanostructures with Sequence-Encoded Enantioseparation Capability. Langmuir, 2020, 36, 10361-10370.	1.6	7
249	Enhanced enzymatic hydrolysis of cellulose by endoglucanase via expansin pretreatment and the addition of zinc ions. Bioresource Technology, 2021, 333, 125139.	4.8	7
250	Intensive Protein Digestion Using Crossâ€Linked Trypsin Aggregates in Proteomics Analysis. ChemPlusChem, 2013, 78, 407-412.	1.3	6
251	Multimode Optical Fiber Surface Plasmon Resonance Signal Processing Based on the Fourier Series Fitting. Plasmonics, 2016, 11, 721-727.	1.8	6
252	A Low-Cost and Easily Prepared Manganese Carbonate as an Efficient Catalyst for Aerobic Oxidation of 5-Hydroxymethylfurfural to 2,5-Diformylfuran. Transactions of Tianjin University, 2018, 24, 301-307.	3.3	6

#	Article	IF	CITATIONS
253	Rationally Designed Peptidyl Virusâ€Like Particles Enable Targeted Delivery of Genetic Cargo. Angewandte Chemie, 2018, 130, 14228-14232.	1.6	6
254	Sequential sandwich immunoassay for simultaneous detection in trace samples using single-channel surface plasmon resonance. Analyst, The, 2019, 144, 5700-5705.	1.7	6
255	Facile Fabrication of Oxidized Ligninâ€Based Porous Carbon Spheres for Efficient Removal of Pb ²⁺ . ChemistrySelect, 2019, 4, 5251-5257.	0.7	6
256	Construction of Supramolecular Nanostructures with High Catalytic Activity by Photoinduced Hierarchical Coâ€Assembly. Chemistry - A European Journal, 2019, 25, 7896-7902.	1.7	6
257	Oligomeric procyanidins inhibit insulin fibrillation by forming unstructured and off-pathway aggregates. RSC Advances, 2021, 11, 37290-37298.	1.7	6
258	Real-Time Thickness Measurement of Marine Oil Spill by Fiber-Optic Surface Plasmon Resonance Sensors. Frontiers in Marine Science, 2022, 8, .	1.2	6
259	Transformation of antimicrobial into bradykinin-potentiating peptides during peptic hydrolysis of bovine haemoglobin: identification, release kinetics and reaction network of peptides. Journal of the Science of Food and Agriculture, 2007, 87, 461-469.	1.7	5
260	Capillary Flowâ€Driven, Hierarchical Chiral Selfâ€Assembly of Peptide Nanohelix Arrays. Advanced Materials Interfaces, 2017, 4, 1700514.	1.9	5
261	A simply enzymatic hydrolysis pretreatment for \hat{l}^2 -mannanase production from konjac powder. Bioresource Technology, 2018, 249, 1052-1057.	4.8	5
262	Polyamine-induced, chiral expression from liquid crystalline peptide nanofilaments to long-range ordered nanohelices. Soft Matter, 2019, 15, 4818-4826.	1.2	5
263	Polydopamine-Assisted Fabrication of Stable Silver Nanoparticles on Optical Fiber for Enhanced Plasmonic Sensing. Photonic Sensors, 2020, 10, 97-104.	2.5	5
264	Self-Assembly of Ferrocenyl Phenylalanine into Nanohelical Arrays via Kinetic Control. ACS Applied Bio Materials, 2021, 4, 4744-4752.	2.3	5
265	Nano-engineered natural sponge as a recyclable and deformable reactor for ultrafast conversion of pollutants from water. Chemical Engineering Science, 2022, 247, 117049.	1.9	5
266	Rational Design of Chiral Nanohelices from Self-Assembly of Meso-tetrakis (4-Carboxyphenyl) Porphyrin-Amino Acid Conjugates. Langmuir, 2021, 37, 13067-13074.	1.6	5
267	Flow Rate and Concentrationâ€dependent Effects of Molecular Dynamics on Elution Behaviors of Flexible Polymers in Gel Permeation Chromatography: A Multiâ€angle Laser Light Scattering Study. Journal of Macromolecular Science - Physics, 2006, 45, 699-708.	0.4	4
268	Dissolution and enzymatic hydrolysis of casein micelles studied by dynamic light scattering. Frontiers of Chemical Engineering in China, 2007, 1, 123-127.	0.6	4
269	Selfâ€Assembly of Ferroceneâ€Phenylalanine@Graphene Oxide Hybrid Hydrogels for Dopamine Detection. ChemPlusChem, 2020, 85, 2341-2348.	1.3	4
270	Heat Soaking Pretreatment for Greener Production of Phosphorylated Cellulose Nanofibrils with Higher Charge Density. ACS Sustainable Chemistry and Engineering, 2022, 10, 8876-8884.	3.2	4

#	Article	IF	Citations
271	Identification and Release Kinetics of Peptides from the Process of Peptic Hydrolysis of Bovine Hemoglobin by LCâ€ESIâ€MS/MS. Preparative Biochemistry and Biotechnology, 2007, 37, 123-138.	1.0	3
272	Oscillating Cellulase Adsorption and Enhanced Lignocellulose Hydrolysis upon Ultrasound Treatment. Transactions of Tianjin University, 2017, 23, 11-19.	3.3	3
273	Kinetically Controlled Carboxypeptidase-Catalyzed Synthesis of Novel Antioxidant Dipeptide Precursor BOC-Tyr-Ala. Transactions of Tianjin University, 2018, 24, 513-521.	3.3	3
274	Frontispiz: Biomimetic Bottlebrush Polymer Coatings for Fabrication of Ultralow Fouling Surfaces. Angewandte Chemie, 2019, 131, .	1.6	3
275	Thermally Induced Structural Transition of Peptide Nanofibers into Nanoparticles with Enhanced Fluorescence Properties. ChemPlusChem, 2020, 85, 1523-1528.	1.3	3
276	Self-Assembled Bio-Organometallic Nanocatalysts for Highly Enantioselective Direct Aldol Reactions. Langmuir, 2020, 36, 13735-13742.	1.6	3
277	An effective enzymatic assay for pH selectively measuring direct and total bilirubin concentration by using of CotA. Biochemical and Biophysical Research Communications, 2021, 547, 192-197.	1.0	3
278	Lipid Anchoring Improves Lubrication and Wear Resistance of the Collagen I Matrix. Langmuir, 2021, 37, 13810-13815.	1.6	3
279	Topologyâ€Induced Chiral Amplification and Inversion in Selfâ€Assembling Dipeptide Films. Advanced Materials Interfaces, 0, , 2102089.	1.9	3
280	Polydopamine-assisted fabrication of fiber-optic localized surface plasmon resonance sensor based on gold nanoparticles. Transactions of Tianjin University, 2015, 21, 412-419.	3.3	2
281	Engineering peptide-based biomimetic enzymes for enhanced catalysis. RSC Advances, 2016, 6, 40828-40834.	1.7	2
282	Response to "Comment on †Tunable Design of Structural Colors Produced by Pseudoâ€1D Photonic Crystals of Graphene Oxide' and Thinâ€Film Interference from Dried Graphene Oxide Film― Small, 2017, 13, 1700102.	5.2	2
283	High-Efficiency Preparation of 2,5-Diformylfuran with a Keto-ABNO Catalyst Under Mild Conditions. Transactions of Tianjin University, 2019, 25, 118-123.	3.3	2
284	Solid-Phase Enzymatic Peptide Synthesis to Produce an Antioxidant Dipeptide. Transactions of Tianjin University, 2019, 25, 276-282.	3.3	2
285	Promising Techniques for Depolymerization of Lignin into Valueâ€added Chemicals. ChemCatChem, 2019, 11, 638-638.	1.8	2
286	Sensing Interfaces: Antifouling Materials for Sensors. , 2023, , 619-635.		2
287	Co-modification of Biochar and Bentonite for Adsorption and Stabilization of Pb ²⁺ ions. Wuji Cailiao Xuebao/Journal of Inorganic Materials, 2021, 36, 1083.	0.6	2
288	Divalent cations accelerate aggregation of Black phosphorus nanodots. Journal of Molecular Liquids, 2021, 341, 117331.	2.3	2

#	Article	IF	Citations
289	Mineralization and Selfâ€assembly of Gold Nanoparticles using Sulfur Amino Acid Modified Hierarchically Porous Metalâ€Organic Frameworks. ChemistrySelect, 2021, 6, 712-716.	0.7	2
290	Enhanced Polychromatic Luminescence of Bionic Peptidyl Nanoparticles Driven by Hydrogen Bonds. Particle and Particle Systems Characterization, 0, , 2100260.	1.2	2
291	EFFECT OF PHOSPHORYLATION ON THE RETENTION BEHAVIOR OF PEPTIDES IN ION PAIRING REVERSED-PHASE HPLC BASED ON A PREDICTION MODEL. Journal of Liquid Chromatography and Related Technologies, 2010, 33, 733-747.	0.5	1
292	Photonic Crystals: Tunable Design of Structural Colors Produced by Pseudo-1D Photonic Crystals of Graphene Oxide (Small 25/2016). Small, 2016, 12, 3432-3432.	5.2	1
293	Peptide Biomaterials: Photo-Induced Polymerization and Reconfigurable Assembly of Multifunctional Ferrocene-Tyrosine (Small 25/2018). Small, 2018, 14, 1870118.	5.2	1
294	Protamineâ€induced condensation of peptide nanofilaments into twisted bundles with controlled helical geometry. Journal of Peptide Science, 2019, 25, e3176.	0.8	1
295	Interactions of Transition Metal Dichalcogenide Nanosheets With Mucin: Quartz Crystal Microbalance With Dissipation, Surface Plasmon Resonance, and Spectroscopic Probing. Frontiers in Chemistry, 2019, 7, 166.	1.8	1
296	Rapid enrichment of peptides with calcium-chelating capacity and characterization of physical chemical properties. Acta Alimentaria, 2019, 48, 466-476.	0.3	1
297	Enzyme-free visualization of nucleic acids during HIV infection by octopus-like DNA. International Journal of Biological Macromolecules, 2020, 150, 122-128.	3.6	1
298	Hydrodynamically driven self-assembly of lignin bowls and spheres by line-type micro-mixer. Chemical Engineering Science, 2022, 250, 117390.	1.9	1
299	Self-assembly of Fibonacci number spirals in amyloid-like nanofibril films. Science China Materials, 2022, 65, 3150-3156.	3.5	1
300	Regeneration of insulin monomers from amyloid fibrils by a NH3/H2O2 two-step method. Biotechnology Letters, 2012, 34, 1959-1964.	1.1	0
301	Advanced Methods and Technology in Biomedicine and Biology. Biotechnology and Biotechnological Equipment, 2013, 27, 3909-3910.	0.5	0
302	Peptide Microstructures: Capillary Forceâ€Driven, Hierarchical Coâ€Assembly of Dandelionâ€Like Peptide Microstructures (Small 24/2015). Small, 2015, 11, 2830-2830.	5.2	0
303	Counterionâ€Directed Assembly: Counterionâ€Directed, Structurally Tunable Assembly of Hydrogels, Membranes, and Sacs at Aqueous Liquid–Liquid Interfaces (Adv. Mater. Interfaces 5/2016). Advanced Materials Interfaces, 2016, 3, .	1.9	0
304	Innentitelbild: Rationally Designed Peptidyl Virus-Like Particles Enable Targeted Delivery of Genetic Cargo (Angew. Chem. 43/2018). Angewandte Chemie, 2018, 130, 14134-14134.	1.6	0
305	Frontispiece: Biomimetic Bottlebrush Polymer Coatings for Fabrication of Ultralow Fouling Surfaces. Angewandte Chemie - International Edition, 2019, 58, .	7.2	0