Jeremy R Dewaard

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2288287/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A molecularâ€based identification resource for the arthropods of Finland. Molecular Ecology Resources, 2022, 22, 803-822.	4.8	26
2	Bulk arthropod abundance, biomass and diversity estimation using deep learning for computer vision. Methods in Ecology and Evolution, 2022, 13, 346-357.	5.2	17
3	Message in a Bottle—Metabarcoding enables biodiversity comparisons across ecoregions. GigaScience, 2022, 11, .	6.4	14
4	DNA barcodes reveal striking arthropod diversity and unveil seasonal patterns of variation in the southern Atlantic Forest. PLoS ONE, 2022, 17, e0267390.	2.5	7
5	Connecting highâ€throughput biodiversity inventories: Opportunities for a siteâ€based genomic framework for global integration and synthesis. Molecular Ecology, 2021, 30, 1120-1135.	3.9	26
6	DNA barcodes enable higher taxonomic assignments in the Acari. Scientific Reports, 2021, 11, 15922.	3.3	6
7	Hymenoptera of Canada. ZooKeys, 2019, 819, 311-360.	1.1	10
8	DNA barcodes expose unexpected diversity in Canadian mites. Molecular Ecology, 2019, 28, 5347-5359.	3.9	40
9	A reference library for Canadian invertebrates with 1.5 million barcodes, voucher specimens, and DNA samples. Scientific Data, 2019, 6, 308.	5.3	39
10	DNA barcodes reveal deeply neglected diversity and numerous invasions of micromoths in Madagascar. Genome, 2019, 62, 108-121.	2.0	12
11	Expedited assessment of terrestrial arthropod diversity by coupling Malaise traps with DNA barcoding. Genome, 2019, 62, 85-95.	2.0	56
12	A Sequel to Sanger: amplicon sequencing that scales. BMC Genomics, 2018, 19, 219.	2.8	190
13	Probing planetary biodiversity with DNA barcodes: The Noctuoidea of North America. PLoS ONE, 2017, 12, e0178548.	2.5	49
14	Calibrating the taxonomy of a megadiverse insect family: 3000 DNA barcodes from geometrid type specimens (Lepidoptera, Geometridae). Genome, 2016, 59, 671-684.	2.0	44
15	<scp>DNA</scp> barcodes from centuryâ€old type specimens using nextâ€generation sequencing. Molecular Ecology Resources, 2016, 16, 487-497.	4.8	118
16	Counting animal species with DNA barcodes: Canadian insects. Philosophical Transactions of the Royal Society B: Biological Sciences, 2016, 371, 20150333.	4.0	267
17	The Trichoptera barcode initiative: a strategy for generating a species-level Tree of Life. Philosophical Transactions of the Royal Society B: Biological Sciences, 2016, 371, 20160025.	4.0	62
18	<p>Shared but overlooked: 30 species of Holarctic Microlepidoptera revealed by DNA barcodes and morphology</p> . Zootaxa, 2013, 3749, 1.	0.5	50

#	Article	IF	CITATIONS
19	Common goals: policy implications of DNA barcoding as a protocol for identification of arthropod pests. Biological Invasions, 2010, 12, 2947-2954.	2.4	52
20	Population genetic structure of the salmon louse, <i>Lepeophtheirus salmonis</i> (Krà yer) on wild and farmed salmonids around the Pacific coast of Canada. Aquaculture Research, 2009, 40, 973-979.	1.8	9
21	Assembling DNA Barcodes. Methods in Molecular Biology, 2008, 410, 275-294.	0.9	276
22	An inexpensive, automation-friendly protocol for recovering high-quality DNA. Molecular Ecology Notes, 2006, 6, 998-1002.	1.7	1,219
23	Probing the relationships of the branchiopod crustaceans. Molecular Phylogenetics and Evolution, 2006, 39, 491-502.	2.7	75
24	Biological identifications through DNA barcodes. Proceedings of the Royal Society B: Biological Sciences, 2003, 270, 313-321.	2.6	9,476