
Nugzar Z Mamardashvili

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2288278/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Enhancement of two-photon absorption in tetrapyrrolic compounds. Journal of the Optical Society of America B: Optical Physics, 2003, 20, 321.	0.9	135
2	Drastic enhancement of two-photon absorption in porphyrins associated with symmetrical electron-accepting substitution. Chemical Physics Letters, 2002, 361, 504-512.	1.2	100
3	Functional supramolecular systems: design and applications. Russian Chemical Reviews, 2021, 90, 895-1107.	2.5	93
4	Macroheterocyclic Compounds - a Key Building Block in New Functional Materials and Molecular Devices. Macroheterocycles, 2020, 13, 311-467.	0.9	91
5	Supramolecular porphyrin complexes. Russian Chemical Reviews, 2005, 74, 765-780.	2.5	49
6	Self-assembling systems based on porphirins. Russian Chemical Reviews, 2008, 77, 59-75.	2.5	49
7	Spectral properties of porphyrins and their precursors and derivatives. Russian Chemical Reviews, 2001, 70, 577-606.	2.5	47
8	Corrole NH Tautomers: Spectral Features and Individual Protonation. Journal of Physical Chemistry A, 2012, 116, 10683-10694.	1.1	44
9	Hybrid multi-porphyrin supramolecular assemblies: Synthesis andÂstructure elucidation by 2D DOSY NMR studies. Journal of Molecular Structure, 2015, 1099, 174-180.	1.8	35
10	Synthesis and basic properties of bisporphyrinocalix[4]arene. Russian Journal of General Chemistry, 2008, 78, 673-677.	0.3	33
11	Porphyrin halide ion receptor. Russian Journal of General Chemistry, 2007, 77, 1458-1462.	0.3	29
12	Synthesis and spectral properties of cobalt(II) and cobalt(III) tetraarylporphyrinates. Russian Journal of Inorganic Chemistry, 2013, 58, 740-743.	0.3	26
13	Synthesis and spectroscopic characterization of Ru(II) and Sn(IV)-porphyrins supramolecular complexes. Journal of Molecular Structure, 2015, 1081, 426-430.	1.8	25
14	Molecular recognition of nitrogen – containing bases by Zn[5,15-bis-(2,6-dodecyloxyphenyl)]porphyrin. Supramolecular Chemistry, 2017, 29, 360-369.	1.5	23
15	Optically active supramolecular systems based on porphyrins. Russian Chemical Reviews, 2006, 75, 737-748.	2.5	22
16	Medium viscosity effect on fluorescent properties of Sn(IV)-tetra(4-sulfonatophenyl)porphyrin complexes in buffer solutions. Journal of Molecular Liquids, 2019, 277, 1047-1053.	2.3	22
17	The synthesis of porphyrins from dipyrrolylmethanes. Russian Chemical Reviews, 2000, 69, 307-323.	2.5	21
18	Tetrapyrrolic compounds as hosts for binding of halides and alkali metal cations. Journal of Porphyrins and Phthalocyanines, 2009, 13, 1148-1158.	0.4	21

#	Article	IF	CITATIONS
19	Binding ability of Zn-tetraarylporphyrins with two, four and eight		
-			

#	Article	IF	CITATIONS
37	Synthesis of calix[4]arene-bis(tin(Iv)porphyrins) and supramolecular complexes on their basis. Russian Journal of Inorganic Chemistry, 2012, 57, 390-397.	0.3	9
38	Copper(II), cobalt(II), cobalt(III), and tin(IV) 5,10,15,20-tetraphenyl tetrabenzoporphyrinates: Synthesis and properties. Russian Journal of Inorganic Chemistry, 2017, 62, 683-687.	0.3	9
39	Fluorescent Properties and Kinetic Rate Constants of some Zn-Tetraarylporphyrins Formation in Acetonitrile. Journal of Fluorescence, 2017, 27, 303-307.	1.3	9
40	New Polyporphyrin Arrays with Controlled Fluorescence Obtained by Diaxial Sn(IV)-Porphyrin Phenolates Chelation with Cu2+ Cation. Polymers, 2021, 13, 829.	2.0	9
41	Highly Sensitive Halide Ions Recognition with Diprotonated Porphyrin. Macroheterocycles, 2008, 1, 50-58.	0.9	9
42	Pyridyl-substituted porphyrins: I. Synthesis and basicity of monopyridylporphyrins. Russian Journal of Organic Chemistry, 2010, 46, 144-149.	0.3	8
43	Metal exchange reaction of cadmium 5-monoaza-2,3,7,8,12,13,17,18-octamethylporphyrinate with zinc(II) and copper(II) chlorides in dimethyl sulfoxide. Russian Journal of Coordination Chemistry/Koordinatsionnaya Khimiya, 2012, 38, 319-324.	0.3	8
44	Synthesis and properties of ms- and \hat{l}^2 -substituted Pt(II) and Pt(IV) tetraphenylporphyrinates. Russian Journal of General Chemistry, 2013, 83, 2108-2111.	0.3	8
45	Transmetalation of (octaphenyltetraazaporphyrinato)magnesium(II) with manganese(II) chloride in dimethylformamide. Russian Journal of General Chemistry, 2014, 84, 1389-1393.	0.3	8
46	Axial Coordination of Pyridine- and Imidazole-Based Drug Molecules to Co(III)-Tetra(4-Carboxyphenyl)porphyrin. Russian Journal of Inorganic Chemistry, 2018, 63, 1192-1198.	0.3	8
47	Rate-acidity hysteresis and enthalpy-entropy compensation upon metalloporphyrin formation: Implication for the metal ion coordination mechanism. Journal of Molecular Liquids, 2019, 275, 491-498.	2.3	8
48	More Is Not Always Better: Local Models Provide Accurate Predictions of Spectral Properties of Porphyrins. International Journal of Molecular Sciences, 2022, 23, 1201.	1.8	8
49	Solubility of Alkylporphyrins. Molecules, 2000, 5, 762-766.	1.7	7
50	Molecular recognition of α-amino acid esters with arylporphyrin zinc complexes. Russian Journal of General Chemistry, 2004, 74, 1446-1450.	0.3	7
51	Synthesis and basic properties of tetra-tert-butyltetrabenzo-5,10,15-triazaporphyrin. Russian Journal of General Chemistry, 2009, 79, 833-838.	0.3	7
52	Vapor pressures of macrocyclic compounds according to effusion method data. Tetrahedron Letters, 2011, 52, 705-707.	0.7	7
53	Polymorphism of 4-tert-butylcalix[4]arene upon formation of n-hexane and acetonitrile complexes and thermal desolvation. CrystEngComm, 2012, 14, 533-536.	1.3	7
54	Self-organization of zinc(II) and tin(IV) porphyrinates into supramolecular trimers. Russian Journal of General Chemistry, 2013, 83, 1424-1428.	0.3	7

#	Article	IF	CITATIONS
55	Influence of the Coordination Surrounding of Co(II)- and Co(III)-Tetraphenylporphyrins on Their Destruction Processes in the Presence of Organic Peroxides. Russian Journal of General Chemistry, 2018, 88, 1154-1163.	0.3	7
56	Synthesis and Spectral and Fluorescent Properties of Metal Complexes of Octakis(4-flurophenyl)tetraazaporphyrins. Russian Journal of Organic Chemistry, 2019, 55, 655-661.	0.3	7
57	Macrocyclic Receptors for Identification and Selective Binding of Substrates of Different Nature. Molecules, 2021, 26, 5292.	1.7	7
58	Synthesis of Ru(II) and Sn(IV) Tetraphenylporphyrin Complexes with One - and Two -center Organic Substrates. Macroheterocycles, 2013, 6, 67-73.	0.9	7
59	Synthesis and Acid-base Properties of Isomeric Tetrachlorooctabromo- and Tetrabromooctachlorotetraphenylporphyrins. Macroheterocycles, 2019, 12, 22-28.	0.9	7
60	The influence of alkyl bridge substitution on the porphyrin solubility. Journal of Molecular Liquids, 2001, 91, 189-191.	2.3	6
61	Complexation of Zn Arylporphyrinates with Leucine Methyl Ester. Russian Journal of Coordination Chemistry/Koordinatsionnaya Khimiya, 2004, 30, 388-392.	0.3	6
62	Thermodynamic parameters of sublimation of calix[4]arenes. Russian Journal of General Chemistry, 2006, 76, 974-979.	0.3	6
63	Halide ion determination from luminescence of the diprotonated form of porphyrin. Journal of Applied Spectroscopy, 2007, 74, 831-837.	0.3	6
64	Synthesis and spectrophotometric study of deprotonation of octamethylporphyrin derivatives with 1,8-diazabicyclo[5.4.0]undec-7-ene in acetonitrile. Russian Journal of General Chemistry, 2014, 84, 103-107.	0.3	6
65	Synthesis and properties of bromine-substituted Co(II) tetraphenylporphyrinates. Russian Journal of General Chemistry, 2016, 86, 1091-1094.	0.3	6
66	Complex formation of β-brominated tetraphenylporphyrins and metal exchange of their cadmium complexes with d-metal salts in dimethylformamide. Russian Journal of General Chemistry, 2016, 86, 102-109.	0.3	6
67	Thermodynamic aspects of interaction zinc(II)tetraphenylporphyrin with bidentate ligands in dilute solutions. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 2016, 84, 71-77.	0.9	6
68	Cobalt(III) tetrabenzoporphyrin: Synthesis, spectral and coordination properties. Russian Journal of Inorganic Chemistry, 2017, 62, 301-308.	0.3	6
69	Synthesis and Spectral and Coordination Properties of meso-Tetraarylporphyrins. Russian Journal of Organic Chemistry, 2019, 55, 1878-1883.	0.3	6
70	Synthesis and Acid–Base Properties of β-Octabromo-Substituted Unsymmetrical Nitrophenylporphyrins. Russian Journal of Organic Chemistry, 2019, 55, 1554-1561.	0.3	6
71	Molecular Recognition of Imidazole Derivatives by Co(III)-Porphyrins in Phosphate Buffer (pH = 7.4) and Cetylpyridinium Chloride Containing Solutions. Molecules, 2021, 26, 868.	1.7	6
72	Electrochemical and Electrocatalytical Properties of 3,7,13,17-Tetramethyl-2,8,12,18-Tetrabutylporphyrin in Alkaline Solution. Molecules, 2000, 5, 767-774.	1.7	5

Nugzar Z Mamardashvili

#	Article	IF	CITATIONS
73	Synthesis and design of tetrapyrrole molecular receptors for alkali metal cations. Russian Journal of Organic Chemistry, 2007, 43, 1397-1402.	0.3	5
74	Synthesis and basic properties of 5-aza-2,3,7,8,12,13,17,18-octamethylporphyrin. Russian Journal of General Chemistry, 2008, 78, 1972-1976.	0.3	5
75	Supramolecular complexes of tetrapyrrolic macrocycles: A basis for developing new molecular technologies. Nanotechnologies in Russia, 2009, 4, 253-261.	0.7	5
76	Synthesis and spectral properties of the Co2+ and Co3+ complexes with octaaryltetraazaporphyrins. Russian Journal of General Chemistry, 2010, 80, 2387-2390.	0.3	5
77	Cation-dependent binding of zinc diethoxycarbonylcalix[4]arenebis(porphyrinate) triethylenediamine. Russian Journal of Coordination Chemistry/Koordinatsionnaya Khimiya, 2011, 37, 195-201.	0.3	5
78	A molecular receptor based on the 2,3,7,8,12,13,17,18-octaethyl-21,23-dimethylporphyrin for detection of fluoride ions: Synthesis, spectral and complexation properties. Russian Journal of General Chemistry, 2012, 82, 1272-1277.	0.3	5
79	One and two point binding of organic bases molecules by meso-nitro substituted Zn-octaethylporphyrins. Journal of Porphyrins and Phthalocyanines, 2014, 18, 1101-1107.	0.4	5
80	Cation assisted complexation of octacarbazolylphenyl substituted Zn(<scp>ii</scp>)-tetraphenylporphyrin with [2,2,2]cryptand. RSC Advances, 2015, 5, 44557-44562.	1.7	5
81	Effect of the chemical modification of a macrocycle and the acidity of a medium on the spectral properties and basicity of tetraphenylporphyrin in HCl–N,N-dimethylformamide system at 298 K. Russian Journal of Physical Chemistry A, 2016, 90, 994-999.	0.1	5
82	Bromo-substituted Mn(II) and Mn(III)-tetraarylporphyrins: synthesis and properties. Journal of Coordination Chemistry, 2018, 71, 3222-3232.	0.8	5
83	Acid–Base Properties of Polyhalogenated Tetraphenylporphyrins. Russian Journal of Organic Chemistry, 2020, 56, 1054-1061.	0.3	5
84	Axial Coordination of Imidazoles by meso-Nitro Substituted Zn-Octaethylporphyrins. Macroheterocycles, 2013, 6, 323-326.	0.9	5
85	Halogenation of b-Positions in $ extsf{D}_i extsf{D}_i^4(II)$ -Tetraphenylporphyrins. Macroheterocycles, 2018, 11, 85-88.	0.9	5
86	Synthesis of Monohydroxy-Substituted Diarylporphyrins and Their Binding Ability towards Aminobenzoic Acids. Macroheterocycles, 2011, 4, 30-33.	0.9	5
87	Synthesis and design of supramolecular systems on the basis of tetrapyrrole macrocycles. Russian Journal of Organic Chemistry, 2007, 43, 1864-1869.	0.3	4
88	Thermodynamics of sublimation of calix[4]arene complexes with solvent molecules. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 2007, 58, 329-335.	1.6	4
89	Anion-dependent binding of zinc calix[4]pyrrole-bisporphyrinate triethylenediamine. Russian Journal of Coordination Chemistry/Koordinatsionnaya Khimiya, 2011, 37, 872-877.	0.3	4
90	Determination of acidity of di-, tri-, and tetraazaporphyrins in dimethyl sulfoxide-potassium cryptate medium. Russian Journal of General Chemistry, 2011, 81, 602-606.	0.3	4

#	Article	IF	CITATIONS
91	Cation- and anion-assisted binding of triethylenediamine by zinc bisporphyrinates. Russian Chemical Bulletin, 2013, 62, 123-132.	0.4	4
92	Resonance Raman and FTIR spectra of Mg-porphyrazines. Journal of Molecular Structure, 2014, 1058, 197-204.	1.8	4
93	Synthesis and binding ability of mono- and tetrasubstituted aminophosphonate Zn-tetraarylporphyrins towards N- and O-containing organic substrates. Supramolecular Chemistry, 2014, 26, 427-434.	1.5	4
94	Metal-exchange reaction of Mg -octaphenyltetraazaporphyrin with Co (II). Journal of Porphyrins and Phthalocyanines, 2014, 18, 169-172.	0.4	4
95	Chelation and fluorescence properties of tetraphenylporphyrin and 5,10,15,20-tetra(4-hydroxyphenyl)porphyrin in acetonitrile. Russian Journal of Physical Chemistry A, 2017, 91, 94-99.	0.1	4
96	Influence of the macrocycle structure on the ability of Co(II)-porphyrins to oxidize in the presence of organic bases. Journal of Coordination Chemistry, 2018, 71, 4194-4209.	0.8	4
97	Synthesis and Acid–Base, Absorption, and Fluorescence Properties of Phthalocyanine Derivatives. Russian Journal of General Chemistry, 2020, 90, 852-857.	0.3	4
98	Influence of the Chemical Modification of Porphyrins on Their Coordination and Acid-Base Properties. Russian Journal of General Chemistry, 2001, 71, 797-802.	0.3	3
99	Effect of the chemical modification of the tetrapyrrole macrocycle on the reactivity of porphyrins in complexation with Pt4+ and Pd2+ cations. Russian Journal of Inorganic Chemistry, 2007, 52, 250-253.	0.3	3
100	Synthesis of cyclophane-like porphyrin-calix[4]pyrrole conjugates. Russian Journal of Organic Chemistry, 2010, 46, 1246-1250.	0.3	3
101	Bisporphyrin-calix[4]arene heterotopic receptors of multifunctional substrates. Russian Journal of General Chemistry, 2011, 81, 594-601.	0.3	3
102	Metal exchange reaction of magnesium octaphenyltetraazaporphyrin with copper, cobalt, and zinc chlorides in DMSO and DMF. Russian Journal of General Chemistry, 2014, 84, 1989-1993.	0.3	3
103	Spectrophotometric study of acid-base and complexing properties of 5,10,15-trinitro-2,3,7,8,12,13,17,18-octaethylporphyrin in acetonitrile. Russian Journal of General Chemistry, 2014, 84, 1207-1211.	0.3	3
104	Spectrophotometric study of acid-base and coordination properties of 2,3,7,8,12,13,17,18-octamethyl-5,10,15,20-tetrakis(thiophen-2-yl)porphyrin. Russian Journal of General Chemistry, 2015, 85, 876-881.	0.3	3
105	β-Bromo-substituted palladium(II) tetraphenylporphyrins. Synthesis and spectral properties. Russian Journal of General Chemistry, 2017, 87, 1580-1583.	0.3	3
106	Synthesis and Spectral Characteristics of Sn(IV) Tetraphenylporphyrinates. Russian Journal of General Chemistry, 2018, 88, 2559-2563.	0.3	3
107	Synthesis and Properties of Zinc(II), Cadmium(II), Manganese(III), and Tin(IV) Octakis(4-methoxyphenyl)porphyrins. Russian Journal of General Chemistry, 2018, 88, 978-984.	0.3	3
108	Spectral-Fluorescence Properties of Zn(II)-Octaphenyltetraazaporphyrins. Journal of Fluorescence, 2020, 30, 657-664.	1.3	3

#	Article	IF	CITATIONS
109	Synthesis of unsymmetrical 5,15-diarylporphyrins. Journal of Porphyrins and Phthalocyanines, 2002, 06, 476-478.	0.4	2
110	Synthesis of Unsymmetrically Substituted Porphyrins. Russian Journal of Organic Chemistry, 2002, 38, 1485-1488.	0.3	2
111	Synthesis of bis-octaethylporphyrin cyclophane derivatives. Russian Journal of Organic Chemistry, 2004, 40, 1819-1822.	0.3	2
112	Complex formation of dimeric cyclophane zinc diphenylporphyrinates with 1,4-diazabicyclo[2,2,2]octane and pyrazine. Russian Journal of Inorganic Chemistry, 2006, 51, 1264-1269.	0.3	2
113	Stoichiometric complexes of calix[4]arenes with solvent molecules. Russian Journal of Physical Chemistry A, 2007, 81, 1936-1940.	0.1	2
114	Synthesis, spectra, and complexing properties of polyoxyethylene-substituted 5,15-diphenylporphyrins. Russian Journal of General Chemistry, 2007, 77, 1965-1971.	0.3	2
115	pH-Dependent conformational changes in bisporphyrincalix[4]arene. Russian Journal of General Chemistry, 2008, 78, 485-492.	0.3	2
116	Complexation and basic properties of polyethylene oxide-substituted porphyrins. Russian Journal of Coordination Chemistry/Koordinatsionnaya Khimiya, 2009, 35, 850-856.	0.3	2
117	Effect of the macrocycle chemical modification on the tetraphenylporphin basic properties. Russian Journal of General Chemistry, 2009, 79, 1029-1034.	0.3	2
118	Basic properties of porphyrins with polyethylenoxide spacers of various length. Russian Journal of General Chemistry, 2009, 79, 2435-2439.	0.3	2
119	Synthesis of ms- and β-substituted ruthenium(II) porphyrinates. Russian Journal of Inorganic Chemistry, 2010, 55, 1421-1424.	0.3	2
120	Effect of the nature of the tetrapyrrole macrocycle on the transmetallation of Zn2+ and Cd2+ porphyrins with PdCl2 in dimethylformamide. Russian Journal of Inorganic Chemistry, 2011, 56, 484-488.	0.3	2
121	Polymorphic conversions of 4-tert-butylcalix[4]arene upon the formation and thermal destruction of a complex with n-hexane. Russian Journal of Physical Chemistry A, 2011, 85, 1162-1167.	0.1	2
122	Spectral and complex-forming properties of β-bromo-substituted porphyrins in N,N-dimethylformamide. Russian Journal of General Chemistry, 2012, 82, 1278-1283.	0.3	2
123	Kinetics and mechanism of metal exchange between cadmium porphyrin complexes and d-metal salts in DMF. Russian Journal of General Chemistry, 2013, 83, 2103-2107.	0.3	2
124	Synthesis and spectral properties of meso-substituted Ni2+ octaalkylporphyrinates. Russian Journal of Inorganic Chemistry, 2013, 58, 574-576.	0.3	2
125	Metal exchange reaction of magnesium(II) octa(4-bromophenyl)tetraazaporphyrinate with copper and cobalt chlorides in dimethylformamide. Russian Journal of General Chemistry, 2014, 84, 2187-2190.	0.3	2
126	Synthesis and spectrophotometric study of the acid-base and complexing properties of 2,3,7,8,12,13,17,18-Octaethyl-5,10,15,20-tetrakis(4-methoxyphenyl)porphyrin in acetonitrile. Russian Journal of General Chemistry, 2014, 84, 1404-1410.	0.3	2

#	Article	IF	CITATIONS
127	Bis[(tetraphenylporphyrinato)zinc]-calix[4]pyrrole. Synthesis and receptor properties. Russian Journal of Organic Chemistry, 2014, 50, 559-566.	0.3	2
128	Study of the metal-exchange reaction between Cd(II) octa(4-bromophenyl)tetraazaporphyrinate and cobalt chloride in organic solvents. Russian Journal of General Chemistry, 2015, 85, 911-914.	0.3	2
129	Bromination of β-positions of tetra(4-bromphenyl)porphyrin and its complex with Zn(II). Russian Journal of Organic Chemistry, 2015, 51, 1649-1651.	0.3	2
130	Synthesis and properties of manganese complexes of meso-tetraphenyltetrabenzoporphyrin. Russian Journal of General Chemistry, 2016, 86, 1907-1911.	0.3	2
131	Metal exchange of Cd(II) octaphenyltetraazaporphyrin with d-metal salts in organic solvents. Russian Journal of Inorganic Chemistry, 2016, 61, 389-392.	0.3	2
132	Magnesium(II) and cadmium(II) octaphenyltetraazaporphyrinates in metal exchange reaction with MnCl2 in DMSO. Russian Journal of Inorganic Chemistry, 2017, 62, 517-522.	0.3	2
133	Synthesis and spectrophotometry study of the acid-base properties of nitro-substituted 5-phenyl-β-octaalkylporphines. Russian Journal of General Chemistry, 2017, 87, 1742-1751.	0.3	2
134	Porous molecular crystals of calix[4]arenes. Russian Chemical Bulletin, 2017, 66, 241-253.	0.4	2
135	Coordination properties of molecular and anionic forms of 5,10,15,20,21-pentaphenyl-2,3,7,8,12,13,17,18-octaethylporphyrin in acetonitrile. Russian Journal of Inorganic Chemistry, 2017, 62, 123-127.	0.3	2
136	Synthesis of β-Bromo-Substituted Cu(II) Tetraphenylporphyrinates. Russian Journal of Inorganic Chemistry, 2018, 63, 732-735.	0.3	2
137	Metal Exchange Reaction of Cd(II) 5,10,15,20-Tetra(4-chlorophenyl)porphyrinate with Copper and Zinc Chlorides in DMSO. Russian Journal of General Chemistry, 2020, 90, 2105-2110.	0.3	2
138	Fluorescence properties and quantum-chemical modeling of tert-butyl-substituted porphyrazines: Structural and ionization effect. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2020, 240, 118601.	2.0	2
139	Synthesis of Calix[4]arene Bisporphyrin on the Basis of Biladiene-a,c Dihydrobromide. Macroheterocycles, 2009, 2, 30-32.	0.9	2
140	Synthesis, Structure, and Spectral Properties of Perhalogenated Metalloporphyrins. Russian Journal of Inorganic Chemistry, 2022, 67, 267-275.	0.3	2
141	Substituted Pyrroles. Molecules, 2000, 5, 89-92.	1.7	1
142	Influence of isomerism on the chromatographic behaviour of porphyrins. Chromatographia, 2001, 54, 519-522.	0.7	1
143	Metal exchange reaction of cadmium meso-triaza-β-tetra-(4-tert-butylbenzo)porphyrinate with metal salts in dimethyl sulfoxide. Russian Journal of Coordination Chemistry/Koordinatsionnaya Khimiya, 2011, 37, 495-500.	0.3	1
144	Polymorphism of 4-tert-butylcalix[4]arene upon the formation and thermal destruction of its complex with acetonitrile. Russian Journal of Physical Chemistry A, 2012, 86, 408-412.	0.1	1

#	Article	IF	CITATIONS
145	4-tert-butylcalix[4]arene-based porous structures. Russian Journal of Physical Chemistry A, 2013, 87, 783-788.	0.1	1
146	Complexation of zinc(II) and ruthenium(II) porphyrinates with methyl glycinate and methyl m-aminobenzoate. Russian Journal of General Chemistry, 2013, 83, 993-999.	0.3	1
147	Spectrophotometric study of the complexing properties of 2,3,7,8,12,13,17,18-Octaethyl-5,10,15-trinitroporphyrin and its dianion toward Zn(OAc)2 in acetonitrile. Russian Journal of General Chemistry, 2014, 84, 1394-1398.	0.3	1
148	Structural features and thermal stability of molecular complexes of 25,26,27,28-Tetrahydroxycalix[4]arene with solvents. Russian Journal of Physical Chemistry A, 2014, 88, 1329-1335.	0.1	1
149	Metal exchange reaction between magnesium octaphenyltetraazaporphyrinate and d-metals salts in dimethylformamide. Russian Journal of General Chemistry, 2014, 84, 733-736.	0.3	1
150	Metal exchange reaction between Mg(II) and Cd(II) octa(4-bromophenyl)tetraazaporphyrinates with manganese(II) chloride in dimethylformamide. Russian Journal of General Chemistry, 2015, 85, 1474-1476.	0.3	1
151	Synthesis and spectrophotometric study of acidic and complexing properties of 5,15-bis(4′-methoxyphenyl)-10,20-bis(4″-nitrophenyl)-2,8,12,18-tetramethyl-3,7,13,17-tetraethylporphyn in acetonitrile. Russian Journal of General Chemistry, 2015, 85, 640-647.	0.3	1
152	Kinetics of metal exchange in Cd(II) octa(4-bromophenyl)porphyrinate with d-metal salts in organic solvents. Russian Journal of Physical Chemistry A, 2017, 91, 437-441.	0.1	1
153	Synthesis and spectral properties of β-bromo-substituted nickel(II) tetraphenylporphyrins. Russian Journal of Organic Chemistry, 2017, 53, 1094-1098.	0.3	1
154	Kinetic and fluorescent properties of tetraphenylporphine derivatives in acetonitrile. Russian Journal of Inorganic Chemistry, 2017, 62, 1120-1126.	0.3	1
155	Investigation of Kinetics of Coordination of meso-Nitro-Substituted Derivatives of 5-Phenyl-β-octaalkylporphine with Palladium Acetate. Russian Journal of General Chemistry, 2018, 88, 973-977.	0.3	1
156	Effect of Medium Basicity on the Coordination Kinetics of meso-Nitro-Substituted Derivatives of 5-Phenyl-β-Octaalkylporphine with Zinc Acetate. Russian Journal of Inorganic Chemistry, 2018, 63, 764-771.	0.3	1
157	Spectral, Acid, and Coordination Properties of Dodecasubstituted Porphyrins. Russian Journal of General Chemistry, 2019, 89, 586-596.	0.3	1
158	Interdependence between structure of nitro-substituted palladium and zinc porphyrinates and its spectral, coordination and acid-base properties. Journal of Molecular Structure, 2019, 1192, 7-14.	1.8	1
159	Effect of Chemical Modification of the Tetrapyrrole Macrocycle Structure on the Spectral, Acid–Base, and Complexing Properties of tert-Butyl-Substituted Porphyrazines. Russian Journal of Organic Chemistry, 2020, 56, 1691-1695.	0.3	1
160	Meso-nitro substitution as a means of Mn-octaethylporphyrin redox state controlling. Journal of Organometallic Chemistry, 2021, 940, 121790.	0.8	1
161	Metal Exchange Reactions of 0,0â€2-Dihalosubstituted Cd(II) Tetraphenylporphyrinates with d-Metal Salts in DMF. Russian Journal of General Chemistry, 2021, 91, 1526-1532.	0.3	1
162	Influence of progressive halogenation of Zn(II)-tetraarylporphyrins and their free bases on the structure and spectral-fluorescence properties of tetrapyrrolic macrocycle. Inorganica Chimica Acta, 2021, 528, 120620.	1.2	1

#	Article	IF	CITATIONS
163	Complexation Of Porphyrins With Ions And Organic Molecules. , 0, , 117-168.		1
164	Co(II)-porphyrin complexes with nitrogen monoxide and imidazole: synthesis, optimized structures, electrochemical behavior and photochemical stability. Journal of Coordination Chemistry, 0, , 1-20.	0.8	1
165	Study of the Metal Exchange Reaction of Cadmium(II) 5,15-Dinitro-2,3,7,8,12,13,17,18-octaethylporphyrinate with d-Metal Salts in Organic Solvents. Russian Journal of General Chemistry, 2022, 92, 256-260.	0.3	1
166	Prospects for the use of macrocyclic photosensitizers for inactivation of SARS-CoV-2: selection of compounds leaders based on the molecular docking data. Journal of Biomolecular Structure and Dynamics, 0, , 1-10.	2.0	1
167	Guest Editor's Notice. Molecules, 2000, 5, 756-756.	1.7	0
168	Chromatographic Characteristics and IR spectra of Isomeric 5,15-Diarylporphyrins. Russian Journal of Organic Chemistry, 2002, 38, 530-533.	0.3	0
169	Synthesis of Unsymmetrically Substituted Porphyrins ChemInform, 2003, 34, no.	0.1	0
170	Mechanisms of enhanced two-photon absorption in porphyrins. , 2003, , .		0
171	Synthesis of Bis-octaethylporphyrin Cyclophane Derivatives ChemInform, 2005, 36, no.	0.1	0
172	Porphyrin—Calix[4]arenes. ChemInform, 2005, 36, no.	0.1	0
173	Complex formation of mono-and binuclear dimeric cyclophane zinc diphenylporphyrinates with pyridine. Russian Journal of Inorganic Chemistry, 2006, 51, 1270-1275.	0.3	0
174	Synthesis of 2,8,12,18-tetrabutyl-3,7,13,17-tetramethyl-5-{3-[11-(pyridin-4-yloxy)-3,6,9-trioxaundecyloxy]phenyl}-porphyrin and study on the effect of its molecular conformation on physicochemical properties. Russian Journal of General Chemistry, 2008, 78, 991-996.	0.3	0
175	Thermodynamics of solvation of calix[4]arenes in n-hexane. Russian Journal of Physical Chemistry A, 2010, 84, 1867-1872.	0.1	0
176	Complexing ability of dimeric zinc octaalkylporphyrinates with a poly(ethyleneoxy) bridge toward 1,4-diazabicyclo[2.2.2]octane and 1,4-diazine. Russian Journal of Coordination Chemistry/Koordinatsionnaya Khimiya, 2010, 36, 305-309.	0.3	0
177	Synthesis and properties of dimeric octaalkylporphyrins with a polyether linker. Russian Journal of Organic Chemistry, 2010, 46, 444-449.	0.3	0
178	pH-switchable porphyrin receptor for binding halide ions. Russian Journal of General Chemistry, 2011, 81, 1231-1238.	0.3	0
179	Cationic tetrapyrrole receptors for selective binding hydroxide ions. Russian Journal of General Chemistry, 2011, 81, 2193-2197.	0.3	0
180	Tetrapyrrole cation receptor for selective binding fluoride ion. Russian Journal of General Chemistry, 2011, 81, 2345-2348.	0.3	0

#	Article	IF	CITATIONS
181	Microporous structures based on 4-tert-butylcalix[4]arene. Doklady Physical Chemistry, 2012, 447, 210-212.	0.2	0
182	Metal-exchange reaction between cadmium tetraphenylporphyrinates and copper(II) in dimethylformamide. Russian Journal of Inorganic Chemistry, 2013, 58, 486-490.	0.3	0
183	Reaction of metal exchange of cadmium 5,10,15,20-tetraphenylporphyrinate and its β-bromo derivative with zinc acetate in dimethylformamide. Russian Journal of General Chemistry, 2013, 83, 989-992.	0.3	Ο
184	Synthesis and spectrophotometric study of acidic and complexation properties of 5,15-bis(4′-methoxyphenyl)-2,8,12,18-tetramethyl-3,7,10,13,17,20-hexaethylporphyrin and 5,15-bis(4′-methoxyphenyl)-10,20-diphenyl-2,8,12,18-tetramethyl-3,7,13,17-tetraethylporphyrin in acetonitrile. Russian Journal of General Chemistry, 2014, 84, 2180-2186.	0.3	0
185	Synthesis of novel thiophosphorylated meso-substituted porphyrin. Russian Journal of General Chemistry, 2015, 85, 2670-2671.	0.3	Ο
186	The effect of chemical modification of the macrocycle on the complex formation between porphyrins and metal salts in organic solvents. Russian Journal of General Chemistry, 2017, 87, 1175-1183.	0.3	0
187	Some Aspects of Metal Exchange Between Cadmium Porhyrinate Octa-(4-bromophenyl)porphyrin and Cobalt Chloride in Organic Solvents. Russian Journal of General Chemistry, 2018, 88, 1996-1999.	0.3	0
188	Basic and Coordination Properties of Tetraphenylporphine Derivatives. Russian Journal of General Chemistry, 2018, 88, 2103-2107.	0.3	0
189	Synthesis and Spectral Properties of Ni(II), Pd(II), Pt(II), and Pt(IV) Tetraphenyltetrabenzoporphyrinates. Russian Journal of Inorganic Chemistry, 2018, 63, 682-686.	0.3	0
190	Synthesis, Spectral, and Coordination Properties of Halogen-Substituted Tetraarylporphyrins. Russian Journal of General Chemistry, 2019, 89, 459-465.	0.3	0
191	Synthesis and Spectral Properties of Unsymmetrically Substituted Mn(II) and Mn(III) Octaethylporphyrins. Russian Journal of Organic Chemistry, 2020, 56, 1374-1382.	0.3	Ο
192	Synthesis and Spectral Properties of meso-Nitro-Substituted Octaethylporphyrins and Their Co(II) Complexes. Russian Journal of General Chemistry, 2020, 90, 1878-1883.	0.3	0
193	Effect of Polyethyleneglycols (PEG) on Solubility of CollI5,10,15,20-Tetra(4-carboxyphenyl)porphyrin and Methylimidazolyl Axial Complex at 298.2 K: Experiment and Modeling. Journal of the Brazilian Chemical Society, 2015, , .	0.6	0
194	Halogenation of Fluoro-Substituted Zinc(II) Tetraphenylporphyrins at the β-Position. Russian Journal of Organic Chemistry, 2020, 56, 2132-2136.	0.3	0