
Sheila A Lukehart

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2288181/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Macrolide Resistance inTreponema pallidumin the United States and Ireland. New England Journal of Medicine, 2004, 351, 154-158.	27.0	356
2	Enhanced Molecular Typing of <i>Treponema pallidum</i> : Geographical Distribution of Strain Types and Association with Neurosyphilis. Journal of Infectious Diseases, 2010, 202, 1380-1388.	4.0	194
3	Syphilis: using modern approaches to understand an old disease. Journal of Clinical Investigation, 2011, 121, 4584-4592.	8.2	189
4	The endemic treponematoses. Microbes and Infection, 2002, 4, 83-94.	1.9	188
5	The Endemic Treponematoses. Clinical Microbiology Reviews, 2014, 27, 89-115.	13.6	161
6	Gene conversion: a mechanism for generation of heterogeneity in the tprK gene of Treponema pallidum during infection. Molecular Microbiology, 2004, 52, 1579-1596.	2.5	137
7	Haemophilus ducreyi as a cause of skin ulcers in children from a yaws-endemic area of Papua New Guinea: a prospective cohort study. The Lancet Global Health, 2014, 2, e235-e241.	6.3	112
8	Antigenic Variation in <i>Treponema pallidum</i> : TprK Sequence Diversity Accumulates in Response to Immune Pressure during Experimental Syphilis. Journal of Immunology, 2010, 184, 3822-3829.	0.8	97
9	The tprK Gene Is Heterogeneous among Treponema pallidum Strains and Has Multiple Alleles. Infection and Immunity, 2000, 68, 824-831.	2.2	95
10	Antibiotic Selection May Contribute to Increases in Macrolideâ€ResistantTreponema pallidum. Journal of Infectious Diseases, 2006, 194, 1771-1773.	4.0	90
11	Fine Analysis of Genetic Diversity of the tpr Gene Family among Treponemal Species, Subspecies and Strains. PLoS Neglected Tropical Diseases, 2013, 7, e2222.	3.0	84
12	Current status of syphilis vaccine development: Need, challenges, prospects. Vaccine, 2014, 32, 1602-1609.	3.8	79
13	Isolation and Laboratory Maintenance of <i>Treponema pallidum</i> . Current Protocols in Microbiology, 2007, 7, Unit 12A.1.	6.5	76
14	Identity ofTreponema pallidum subsp.pallidum polypeptides: Correlation of sodium dodecyl sulfate-polyacrylamide gel electrophoresis results from different laboratories. Electrophoresis, 1987, 8, 77-92.	2.4	74
15	Two Mutations Associated With Macrolide Resistance in Treponema pallidum. Sexually Transmitted Diseases, 2012, 39, 954-958.	1.7	72
16	Genomic epidemiology of syphilis reveals independent emergence of macrolide resistance across multiple circulating lineages. Nature Communications, 2019, 10, 3255.	12.8	72
17	Re-emergence of yaws after single mass azithromycin treatment followed by targeted treatment: a longitudinal study. Lancet, The, 2018, 391, 1599-1607.	13.7	70
18	Molecular Differentiation of Treponema pallidum Subspecies. Journal of Clinical Microbiology, 2006, 44, 3377-3380.	3.9	69

SHEILA A LUKEHART

#	Article	IF	CITATIONS
19	Relative Proportions of Pathogenâ€Related Oral Spirochetes (PROS) and <i>Treponema denticola</i> in Supragingival and Subgingival Plaque From Patients With Periodontitis. Journal of Periodontology, 1992, 63, 131-136.	3.4	66
20	T-Cell Responses to <i>Treponema pallidum</i> subsp. <i>pallidum</i> Antigens during the Course of Experimental Syphilis Infection. Infection and Immunity, 1999, 67, 4757-4763.	2.2	57
21	Multiple Alleles of Treponema pallidum Repeat Gene D in Treponema pallidum Isolates. Journal of Bacteriology, 2000, 182, 2332-2335.	2.2	54
22	Global phylogeny of Treponema pallidum lineages reveals recent expansion and spread of contemporary syphilis. Nature Microbiology, 2021, 6, 1549-1560.	13.3	51
23	Function and Protective Capacity of <i>Treponema pallidum</i> subsp. <i>pallidum</i> Glycerophosphodiester Phosphodiesterase. Infection and Immunity, 1998, 66, 5763-5770.	2.2	47
24	Molecular Typing of Treponema pallidum in Ocular Syphilis. Sexually Transmitted Diseases, 2016, 43, 524-527.	1.7	40
25	Antigenic Variation of TprK Facilitates Development of Secondary Syphilis. Infection and Immunity, 2014, 82, 4959-4967.	2.2	38
26	Reduced <i>Treponema pallidum</i> –Specific Opsonic Antibody Activity in HIV-Infected Patients With Syphilis. Journal of Infectious Diseases, 2016, 213, 1348-1354.	4.0	37
27	Sequence Conservation of Glycerophosphodiester Phosphodiesterase among <i>Treponema pallidum</i> Strains. Infection and Immunity, 1999, 67, 3168-3170.	2.2	37
28	Advancing the understanding of treponemal disease in the past and present. American Journal of Physical Anthropology, 2020, 171, 5-41.	2.1	34
29	Treponema pallidum subsp. pallidum TP0136 Protein Is Heterogeneous among Isolates and Binds Cellular and Plasma Fibronectin via its NH2-Terminal End. PLoS Neglected Tropical Diseases, 2015, 9, e0003662.	3.0	32
30	Transcription of TP0126, Treponema pallidum Putative OmpW Homolog, Is Regulated by the Length of a Homopolymeric Guanosine Repeat. Infection and Immunity, 2015, 83, 2275-2289.	2.2	32
31	Diagnostics for Yaws Eradication: Insights From Direct Next-Generation Sequencing of Cutaneous Strains of Treponema pallidum. Clinical Infectious Diseases, 2018, 66, 818-824.	5.8	30
32	Treponema pallidum genome sequencing from six continents reveals variability in vaccine candidate genes and dominance of Nichols clade strains in Madagascar. PLoS Neglected Tropical Diseases, 2021, 15, e0010063.	3.0	30
33	Isolation of Treponema DNA from Necrophagous Flies in a Natural Ecosystem. EBioMedicine, 2016, 11, 85-90.	6.1	27
34	Alterations in the Course of Experimental Syphilis Associated with Concurrent Simian Immunodeficiency Virus Infection. Journal of Infectious Diseases, 1992, 165, 1020-1025.	4.0	25
35	Scientific Monogamy: Thirty Years Dancing with the Same Bug. Sexually Transmitted Diseases, 2008, 35, 2-7.	1.7	25
36	Development of a Multilocus Sequence Typing (MLST) scheme for Treponema pallidum subsp. pertenue: Application to yaws in Lihir Island, Papua New Guinea. PLoS Neglected Tropical Diseases, 2017, 11, e0006113.	3.0	23

SHEILA A LUKEHART

#	Article	IF	CITATIONS
37	Haemophilus ducreyi DNA is detectable on the skin of asymptomatic children, flies and fomites in villages of Papua New Guinea. PLoS Neglected Tropical Diseases, 2017, 11, e0004958.	3.0	21
38	Previous Syphilis Alters the Course of Subsequent Episodes of Syphilis. Clinical Infectious Diseases, 2022, 74, e1-e5.	5.8	20
39	Yaws re-emergence and bacterial drug resistance selection after mass administration of azithromycin: a genomic epidemiology investigation. Lancet Microbe, The, 2020, 1, e263-e271.	7.3	19
40	Longitudinal TprK profiling of in vivo and in vitro-propagated Treponema pallidum subsp. pallidum reveals accumulation of antigenic variants in absence of immune pressure. PLoS Neglected Tropical Diseases, 2021, 15, e0009753.	3.0	15
41	Effectiveness of single-dose azithromycin to treat latent yaws: a longitudinal comparative cohort study. The Lancet Global Health, 2017, 5, e1268-e1274.	6.3	14
42	Survey of Treponemal Infections in Free-Ranging and Captive Macaques, 1999–2012. Emerging Infectious Diseases, 2017, 23, 816-819.	4.3	10
43	When Is Syphilis Not Syphilis? Or Is It?. Sexually Transmitted Diseases, 2014, 41, 554-555.	1.7	9
44	Primary Syphilis in the Male Urethra: A Case Report. Clinical Infectious Diseases, 2019, 68, 1231-1234.	5.8	8
45	Archaeogenetics: What Can Ancient Genomes Tell Us about the Origin of Syphilis?. Current Biology, 2020, 30, R1092-R1095.	3.9	8
46	B-Cell Epitope Mapping of TprC and TprD Variants of Treponema pallidum Subspecies Informs Vaccine Development for Human Treponematoses. Frontiers in Immunology, 2022, 13, 862491.	4.8	7
47	Serum Regulation of In Vitro Lymphocyte Responses in Early Experimental Syphilis. Infection and Immunity, 1982, 37, 568-578.	2.2	6
48	Streptococcus pyogenes Is Associated with Idiopathic Cutaneous Ulcers in Children on a Yaws-Endemic Island. MBio, 2021, 12, .	4.1	5
49	Syphilis? An Unusual Cause of Surgical Emergency in a Human Immunodeficiency Virus-Infected Man. Open Forum Infectious Diseases, 2015, 2, ofv094.	0.9	1
50	New Tools for Syphilis Research. MBio, 2018, 9, .	4.1	1
51	Identification of the Treponema pallidum subsp. pallidum glycerophosphodiester phosphodiesterase homologue. FEMS Microbiology Letters, 1997, 154, 303-310.	1.8	1
52	Rapid molecular diagnosis of chronic skin ulcers – Authors' reply. The Lancet Global Health, 2014, 2, e386.	6.3	0