

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2288022/publications.pdf Version: 2024-02-01

Curla

#	Article	IF	CITATIONS
1	Zika Virus Disrupts Neural Progenitor Development and Leads to Microcephaly in Mice. Cell Stem Cell, 2016, 19, 120-126.	11.1	614
2	A single mutation in the prM protein of Zika virus contributes to fetal microcephaly. Science, 2017, 358, 933-936.	12.6	399
3	Zika Virus Disrupts Neural Progenitor Development and Leads to Microcephaly in Mice. Cell Stem Cell, 2016, 19, 672.	11.1	164
4	Zika-Virus-Encoded NS2A Disrupts Mammalian Cortical Neurogenesis by Degrading Adherens Junction Proteins. Cell Stem Cell, 2017, 21, 349-358.e6.	11.1	163
5	Zika virus directly infects peripheral neurons and induces cell death. Nature Neuroscience, 2017, 20, 1209-1212.	14.8	85
6	Disruption of glial cell development by Zika virus contributes to severe microcephalic newborn mice. Cell Discovery, 2018, 4, 43.	6.7	47
7	A Single Injection of Human Neutralizing Antibody Protects against Zika Virus Infection and Microcephaly in Developing Mouse Embryos. Cell Reports, 2018, 23, 1424-1434.	6.4	29
8	Upregulation of MicroRNA miR-9 Is Associated with Microcephaly and Zika Virus Infection in Mice. Molecular Neurobiology, 2019, 56, 4072-4085.	4.0	19
9	Update on the Animal Models and Underlying Mechanisms for ZIKV-Induced Microcephaly. Annual Review of Virology, 2019, 6, 459-479.	6.7	18
10	Different Gene Networks Are Disturbed by Zika Virus Infection in A Mouse Microcephaly Model. Genomics, Proteomics and Bioinformatics, 2020, 18, 737-748.	6.9	12
11	SRPS associated protein WDR60 regulates the multipolar-to-bipolar transition of migrating neurons during cortical development. Cell Death and Disease, 2021, 12, 75.	6.3	2
12	The development of human monoclonal antibodies against Zika virus. , 2021, , 359-366.		0