

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2288013/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	One-step synthesis of hollow urchin-like Ag2Mn8O16 for long-life Li-O2 battery. Journal of Alloys and Compounds, 2022, 892, 162137.	5.5	4
2	Reversible LiOH chemistry in Li-O2 batteries with free-standing Ag/δ-MnO2 nanoflower cathode. Science China Materials, 2022, 65, 1431-1442.	6.3	9
3	Structural Evolution of Layered Manganese Oxysulfides during Reversible Electrochemical Lithium Insertion and Copper Extrusion. Chemistry of Materials, 2021, 33, 3989-4005.	6.7	3
4	Facile synthesis of yolk–shell structured SiOx/C@Void@C nanospheres as anode for lithium-ion batteries. Journal of Alloys and Compounds, 2021, 874, 159913.	5.5	20
5	An Effective Way to Stabilize Ni-Rich Layered Cathodes. CheM, 2020, 6, 3165-3167.	11.7	8
6	Co ₃ O ₄ -Catalyzed LiOH Chemistry in Li–O ₂ Batteries. ACS Energy Letters, 2020, 5, 3681-3691.	17.4	37
7	A Study of Cu Doping Effects in P2â€Na _{0.75} Mn _{0.6} Fe _{0.2} (Cu _{<i>x</i>} Ni _{0.2â€<i>x</i>Layered Cathodes for Sodiumâ€Ion Batteries. Batteries and Supercaps, 2020, 3, 376-387.}	<td>sub2×42</td>	sub2×42
8	Lattice-contraction triggered synchronous electrochromic actuator. Nature Communications, 2018, 9, 4798.	12.8	80
9	Hydration Layer-Mediated Pairwise Interaction of Nanoparticles. Nano Letters, 2016, 16, 786-790.	9.1	103
10	CTAB-Influenced Electrochemical Dissolution of Silver Dendrites. Langmuir, 2016, 32, 3601-3607.	3.5	22
11	Nanodroplet-Mediated Assembly of Platinum Nanoparticle Rings in Solution. Nano Letters, 2016, 16, 1092-1096.	9.1	38
12	Bonding Pathways of Gold Nanocrystals in Solution. Microscopy and Microanalysis, 2015, 21, 269-270.	0.4	0
13	Effect of Electron Beam on Nanoparticle Dynamics in Solution during in situ TEM Observation. Microscopy and Microanalysis, 2015, 21, 257-258.	0.4	2
14	The Two Dimensional Nanoplate Dynamics Revealed by in situ Liquid Cell TEM. Microscopy and Microanalysis, 2015, 21, 261-262.	0.4	0
15	Role of Fluid-Mediated Interactions in Guiding Nanoparticle Assembly. Microscopy and Microanalysis, 2015, 21, 259-260.	0.4	0
16	Bonding Pathways of Gold Nanocrystals in Solution. Nano Letters, 2014, 14, 6639-6643.	9.1	87
17	Nanoparticle Dynamics in a Nanodroplet. Nano Letters, 2014, 14, 2111-2115.	9.1	73
18	Horizontally suspended carbon nanotube bundles patterned on silicon trench sidewalls. International Journal of Nanotechnology, 2014, 11, 222.	0.2	1

Jingyu Lu

#	Article	IF	CITATIONS
19	Nanoscale Dynamics in Ultrathin Liquids Visualized with TEM. Microscopy and Microanalysis, 2014, 20, 1502-1503.	0.4	1
20	Horizontally suspended carbon nanotube bundles patterned on silicon trench sidewalls. , 2013, , .		0
21	d33 mode piezoelectric diaphragm based acoustic transducer with high sensitivity. Sensors and Actuators A: Physical, 2013, 189, 93-99.	4.1	28
22	Localized synthesis of horizontally suspended carbon nanotubes. Carbon, 2013, 57, 259-266.	10.3	14
23	Light detection by carbon nanotube circuit with strong intertube conduction. , 2012, , .		0
24	Growth mechanism of carbon nanotubes: a nano Czochralski model. Nanoscale Research Letters, 2012, 7, 356.	5.7	9
25	Facile growth of horizontally suspended carbon nanotubes. Materials Letters, 2012, 81, 165-168.	2.6	4
26	Reliable and Large Curvature Actuation from Gradient-Structured Graphene Oxide. Journal of Physical Chemistry C, 2011, 115, 23741-23744.	3.1	34
27	Temperature Control of Microheaters for Localized Carbon Nanotube Synthesis. Journal of Nanoscience and Nanotechnology, 2011, 11, 10498-10502.	0.9	0
28	An aerodynamically efficient sphere anemometer with integrated hot-film sensors for 2-D environmental airflow monitoring. , 2011, , .		10
29	Growth of horizontally aligned carbon nanotubes from designated sidewalls of DRIE-etched silicon trench. , 2011, , .		0
30	Growth of horizontally aligned dense carbon nanotubes from trench sidewalls. Nanotechnology, 2011, 22, 265614.	2.6	15
31	Temperature control of microheaters for localized carbon nanotube synthesis. , 2010, , .		0
32	Study on Mechanism of Vibration Cutting. Key Engineering Materials, 0, 375-376, 42-46.	0.4	1