Jing Zhi Sun

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/228753/publications.pdf

Version: 2024-02-01

		34016	38300
149	9,892	52	95
papers	citations	h-index	g-index
151	151	151	8323
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Click Synthesis, Aggregation-Induced Emission, <i>E</i> / <i>Z</i> /i> Isomerization, Self-Organization, and Multiple Chromisms of Pure Stereoisomers of a Tetraphenylethene-Cored Luminogen. Journal of the American Chemical Society, 2012, 134, 9956-9966.	6.6	558
2	Specific Detection of $\langle scp \rangle d \langle scp \rangle$ -Glucose by a Tetraphenylethene-Based Fluorescent Sensor. Journal of the American Chemical Society, 2011, 133, 660-663.	6.6	551
3	Efficient Solid Emitters with Aggregation-Induced Emission and Intramolecular Charge Transfer Characteristics: Molecular Design, Synthesis, Photophysical Behaviors, and OLED Application. Chemistry of Materials, 2012, 24, 1518-1528.	3.2	472
4	Synergy between Twisted Conformation and Effective Intermolecular Interactions: Strategy for Efficient Mechanochromic Luminogens with High Contrast. Advanced Materials, 2013, 25, 2837-2843.	11.1	422
5	Effects of Substitution with Donor–Acceptor Groups on the Properties of Tetraphenylethene Trimer: Aggregation-Induced Emission, Solvatochromism, and Mechanochromism. Journal of Physical Chemistry C, 2013, 117, 7334-7347.	1.5	385
6	Switching the light emission of (4-biphenylyl)phenyldibenzofulvene by morphological modulation: crystallization-induced emission enhancement. Chemical Communications, 2007, , 40-42.	2.2	384
7	Hyperbranched polytriazoles with high molecular compressibility: aggregation-induced emission and superamplified explosive detection. Journal of Materials Chemistry, 2011, 21, 4056.	6.7	275
8	Tetraphenylpyrazine-based AlEgens: facile preparation and tunable light emission. Chemical Science, 2015, 6, 1932-1937.	3.7	259
9	Room temperature phosphorescence from natural products: Crystallization matters. Science China Chemistry, 2013, 56, 1178-1182.	4.2	236
10	Aggregation-induced red-NIR emission organic nanoparticles as effective and photostable fluorescent probes for bioimaging. Journal of Materials Chemistry, 2012, 22, 15128.	6.7	170
11	Exploration of biocompatible AlEgens from natural resources. Chemical Science, 2018, 9, 6497-6502.	3.7	167
12	Wrapping Carbon Nanotubes in Pyrene-Containing Poly(phenylacetylene) Chains:  Solubility, Stability, Light Emission, and Surface Photovoltaic Properties. Macromolecules, 2006, 39, 8011-8020.	2.2	158
13	Sugar-Based Aggregation-Induced Emission Luminogens: Design, Structures, and Applications. Chemical Reviews, 2020, 120, 4534-4577.	23.0	158
14	Tetraphenylethenyl-modified perylene bisimide: aggregation-induced red emission, electrochemical properties and ordered microstructures. Journal of Materials Chemistry, 2012, 22, 7387.	6.7	154
15	Fumaronitrile-Based Fluorogen: Red to Near-Infrared Fluorescence, Aggregation-Induced Emission, Solvatochromism, and Twisted Intramolecular Charge Transfer. Journal of Physical Chemistry C, 2012, 116, 10541-10547.	1.5	147
16	Red and near infrared emission materials with AIE characteristics. Journal of Materials Chemistry C, 2016, 4, 10588-10609.	2.7	146
17	A 1,3â€Indandioneâ€Functionalized Tetraphenylethene: Aggregationâ€Induced Emission, Solvatochromism, Mechanochromism, and Potential Application as a Multiresponsive Fluorescent Probe. Chemistry - A European Journal, 2014, 20, 4661-4670.	1.7	126
18	Catalyst-Free Thiolâ€"Yne Click Polymerization: A Powerful and Facile Tool for Preparation of Functional Poly(vinylene sulfide)s. Macromolecules, 2014, 47, 1325-1333.	2.2	125

#	Article	lF	CITATIONS
19	Malonitrileâ€Functionalized Tetraphenylpyrazine: Aggregationâ€Induced Emission, Ratiometric Detection of Hydrogen Sulfide, and Mechanochromism. Advanced Functional Materials, 2018, 28, 1704689.	7.8	124
20	Luminogenic Polyacetylenes and Conjugated Polyelectrolytes: Synthesis, Hybridization with Carbon Nanotubes, Aggregation-Induced Emission, Superamplification in Emission Quenching by Explosives, and Fluorescent Assay for Protein Quantitation. Macromolecules, 2009, 42, 9400-9411.	2.2	121
21	D–A Solid Emitter with Crowded and Remarkably Twisted Conformations Exhibiting Multifunctionality and Multicolor Mechanochromism. Journal of Physical Chemistry C, 2014, 118, 10998-11005.	1.5	120
22	Siloles symmetrically substituted on their 2,5-positions with electron-accepting and donating moieties: facile synthesis, aggregation-enhanced emission, solvatochromism, and device application. Chemical Science, 2012, 3, 549-558.	3.7	114
23	Hyperbranched Poly(aroxycarbonyltriazole)s: Metal-Free Click Polymerization, Light Refraction, Aggregation-Induced Emission, Explosive Detection, and Fluorescent Patterning. Macromolecules, 2013, 46, 3907-3914.	2.2	107
24	A two-channel responsive fluorescent probe with AIE characteristics and its application for selective imaging of superoxide anions in living cells. Chemical Communications, 2017, 53, 1653-1656.	2.2	106
25	Polymerization-induced emission. Materials Horizons, 2020, 7, 987-998.	6.4	104
26	Disubstituted Polyacetylenes Containing Photopolymerizable Vinyl Groups and Polar Ester Functionality:Â Polymer Synthesis, Aggregation-Enhanced Emission, and Fluorescent Pattern Formation. Macromolecules, 2007, 40, 3159-3166.	2.2	99
27	Pyrazine luminogens with "free―and "locked―phenyl rings: Understanding of restriction of intramolecular rotation as a cause for aggregation-induced emission. Applied Physics Letters, 2009, 94, .	1.5	97
28	Metal-free click polymerization of propiolates and azides: facile synthesis of functional poly(aroxycarbonyltriazole)s. Polymer Chemistry, 2012, 3, 1075.	1.9	93
29	Label-free fluorescence detection of mercury(ii) and glutathione based on Hg2+-DNA complexes stimulating aggregation-induced emission of a tetraphenylethene derivative. Analyst, The, 2010, 135, 3002.	1.7	90
30	Discriminatory Detection of Cysteine and Homocysteine Based on Dialdehydeâ€Functionalized Aggregationâ€Induced Emission Fluorophores. Chemistry - A European Journal, 2013, 19, 613-620.	1.7	88
31	Metal-Free Catalysts for the Polymerization of Alkynyl-Based Monomers. Catalysts, 2021, 11, 1.	1.6	86
32	Crystallization-induced phosphorescence of benzils at room temperature. Science China Chemistry, 2013, 56, 1183-1186.	4.2	85
33	Triphenylamine-functionalized tetraphenylpyrazine: facile preparation and multifaceted functionalities. Journal of Materials Chemistry C, 2016, 4, 2901-2908.	2.7	82
34	Crystallization-Induced Emission Enhancement of a Simple Tolane-Based Mesogenic Luminogen. Journal of Physical Chemistry C, 2015, 119, 21875-21881.	1.5	80
35	An Aggregationâ€Inducedâ€Emission Platform for Direct Visualization of Interfacial Dynamic Selfâ€Assembly. Angewandte Chemie - International Edition, 2014, 53, 13518-13522.	7.2	77
36	Axial chiral aggregation-induced emission luminogens with aggregation-annihilated circular dichroism effect. Journal of Materials Chemistry C, 2015, 3, 5162-5166.	2.7	76

#	Article	IF	CITATIONS
37	Single Chromophore-Based White-Light-Emitting Hydrogel with Tunable Fluorescence and Patternability. ACS Applied Materials & Interfaces, 2018, 10, 39343-39352.	4.0	76
38	Discriminative fluorescence detection of cysteine, homocysteine and glutathione via reaction-dependent aggregation of fluorophore-analyte adducts. Journal of Materials Chemistry, 2012, 22, 17063.	6.7	73
39	Thiol-yne click polymerization. Science Bulletin, 2013, 58, 2711-2718.	1.7	73
40	Interface-Targeting Strategy Enables Two-Photon Fluorescent Lipid Droplet Probes for High-Fidelity Imaging of Turbid Tissues and Detecting Fatty Liver. ACS Applied Materials & Interfaces, 2018, 10, 10706-10717.	4.0	70
41	In situ monitoring of molecular aggregation using circular dichroism. Nature Communications, 2018, 9, 4961.	5.8	70
42	Conjugates of tetraphenylethene and diketopyrrolopyrrole: tuning the emission properties with phenyl bridges. Chemical Communications, 2014, 50, 8747-8750.	2.2	69
43	Aliphatic Polyesters with White-Light Clusteroluminescence. Journal of the American Chemical Society, 2022, 144, 15286-15294.	6.6	67
44	The fluorescence properties and aggregation behavior of tetraphenylethene–perylenebisimide dyads. Journal of Materials Chemistry C, 2015, 3, 3559-3568.	2.7	64
45	Drawing a clear mechanistic picture for the aggregation-induced emission process. Materials Chemistry Frontiers, 2019, 3, 1143-1150.	3.2	64
46	Sulfur Conversion to Multifunctional Poly(<i>O</i> -thiocarbamate)s through Multicomponent Polymerizations of Sulfur, Diols, and Diisocyanides. Journal of the American Chemical Society, 2021, 143, 3944-3950.	6.6	63
47	Self-healing hyperbranched poly(aroyltriazole)s. Scientific Reports, 2013, 3, .	1.6	61
48	A self-assembly induced emission system constructed by the host–guest interaction of AIE-active building blocks. Chemical Communications, 2015, 51, 1089-1091.	2.2	61
49	Multi-Functional Hyperbranched Poly(vinylene sulfide)s Constructed via Spontaneous Thiol–Yne Click Polymerization. Macromolecules, 2015, 48, 7782-7791.	2.2	57
50	AIE-active, highly thermally and morphologically stable, mechanochromic and efficient solid emitters for low color temperature OLEDs. Journal of Materials Chemistry C, 2014, 2, 7552-7560.	2.7	56
51	Phenolâ€yne Click Polymerization: An Efficient Technique to Facilely Access Regio―and Stereoregular Poly(vinylene ether ketone)s. Chemistry - A European Journal, 2017, 23, 10725-10731.	1.7	56
52	A Red to Nearâ€IR Fluorogen: Aggregationâ€Induced Emission, Large Stokes Shift, High Solid Efficiency and Application in Cellâ€Imaging. Chemistry - A European Journal, 2016, 22, 9784-9791.	1.7	53
53	Facile synthesis of poly(aroxycarbonyltriazole)s with aggregation-induced emission characteristics by metal-free click polymerization. Science China Chemistry, 2011, 54, 611-616.	4.2	52
54	Metal-free click polymerizations of activated azide and alkynes. Polymer Chemistry, 2013, 4, 1396-1401.	1.9	50

#	Article	IF	CITATIONS
55	A recyclable and reusable supported $Cu(I)$ catalyzed azide-alkyne click polymerization. Scientific Reports, 2014, 4, 5107.	1.6	48
56	Functional Disubstituted Polyacetylenes and Soluble Cross-Linked Polyenes:Â Effects of Pendant Groups or Side Chains on Liquid Crystallinity and Light Emission of Poly(1-phenyl-1-undecyne)s. Macromolecules, 2005, 38, 3290-3300.	2.2	47
57	Influence of the number and substitution position of phenyl groups on the aggregation-enhanced emission of benzene-cored luminogens. Chemical Communications, 2015, 51, 4830-4833.	2.2	47
58	Aggregation-Induced Generation of Reactive Oxygen Species: Mechanism and Photosensitizer Construction. Molecules, 2021, 26, 268.	1.7	47
59	Preparation and self-assembly of amphiphilic polymer with aggregation-induced emission characteristics. Science China Chemistry, 2012, 55, 772-778.	4.2	46
60	Effect of ionic interaction on the mechanochromic properties of pyridinium modified tetraphenylethene. Chemical Communications, 2015, 51, 8849-8852.	2.2	45
61	Electronic structure of titanium oxide nanotubules. Chemical Physics Letters, 2003, 380, 366-371.	1.2	44
62	Functional polyacetylenes: hybrids with carbon nanotubes. Polymer Chemistry, 2013, 4, 211-223.	1.9	43
63	Poly(disubstituted acetylene)s: Advances in polymer preparation and materials application. Progress in Polymer Science, 2018, 79, 98-120.	11.8	43
64	Functionalization of Disubstituted Polyacetylenes through Polymer Reactions:  Syntheses of Functional Poly(1-phenyl-1-alkyne)s. Macromolecules, 2006, 39, 467-469.	2.2	42
65	Vapochromism and Crystallization-Enhanced Emission of 1,1-Disubstituted 2,3,4,5-Tetraphenylsiloles. Journal of Inorganic and Organometallic Polymers and Materials, 2007, 17, 673-678.	1.9	41
66	A Facile Synthetic Route to Functional Poly(phenylacetylene)s with Tunable Structures and Properties. Macromolecules, 2011, 44, 6724-6737.	2.2	41
67	Synthesis of Functional Disubstituted Polyacetylenes Bearing Highly Polar Functionalities via Activated Ester Strategy. ACS Macro Letters, 2012, 1, 75-79.	2.3	39
68	Tetraphenylethene Cross-Linked Thermosensitive Microgels via Acylhydrazone Bonds: Aggregation-Induced Emission in Nanoconfined Environments and the Cononsolvency Effect. Macromolecules, 2018, 51, 5762-5772.	2.2	39
69	Unveiling the Different Emission Behavior of Polytriazoles Constructed from Pyrazine-Based AIE Monomers by Click Polymerization. ACS Applied Materials & Samp; Interfaces, 2018, 10, 12181-12188.	4.0	38
70	Ferrocene-based poly(aroxycarbonyltriazole)s: synthesis by metal-free click polymerization and use as precursors to magnetic ceramics. Polymer Chemistry, 2013, 4, 5537.	1.9	37
71	A Polytriazole Synthesized by 1,3â€Dipolar Polycycloaddition Showing Aggregationâ€Enhanced Emission and Utility in Explosive Detection. Macromolecular Rapid Communications, 2013, 34, 796-802.	2.0	35
72	A novel pyridinium modified tetraphenylethene: AIE-activity, mechanochromism, DNA detection and mitochondrial imaging. Journal of Materials Chemistry B, 2018, 6, 1279-1285.	2.9	35

#	Article	IF	CITATIONS
73	Specific Targeting, Imaging, and Ablation of Tumor-Associated Macrophages by Theranostic Mannose–AlEgen Conjugates. Analytical Chemistry, 2019, 91, 6836-6843.	3.2	35
74	Enhanced dispersion of nanotubes in organic solvents by donor–acceptor interaction between functionalized poly(phenylacetylene) chains and carbon nanotube walls. Journal of Polymer Science Part A, 2009, 47, 4995-5005.	2.5	34
75	Structure-dependent emission of polytriazoles. Polymer Chemistry, 2014, 5, 2301.	1.9	34
76	Anionic conjugated polytriazole: direct preparation, aggregation-enhanced emission, and highly efficient Al ³⁺ sensing. Polymer Chemistry, 2016, 7, 5835-5839.	1.9	34
77	Biocompatible organic dots with aggregation-induced emission for in vitro and in vivo fluorescence imaging. Science China Chemistry, 2013, 56, 1228-1233.	4.2	33
78	A single fluorescent probe enables clearly discriminating and simultaneously imaging liquid-ordered and liquid-disordered microdomains in plasma membrane of living cells. Biomaterials, 2017, 120, 46-56.	5.7	33
79	Reactionâ€based AlEâ€active Fluorescent Probes for Selective Detection and Imaging. Israel Journal of Chemistry, 2018, 58, 845-859.	1.0	33
80	Specific Recognition of βâ€Cyclodextrin by a Tetraphenylethene Luminogen through a Cooperative Boronic Acid/Diol Interaction. Chemistry - A European Journal, 2011, 17, 14736-14740.	1.7	32
81	Deciphering the binding behaviours of BSA using ionic AIE-active fluorescent probes. Faraday Discussions, 2017, 196, 285-303.	1.6	32
82	Detection of the critical micelle concentration of cationic and anionic surfactants based on aggregation-induced emission property of hexaphenylsilole derivatives. Science in China Series B: Chemistry, 2009, 52, 755-759.	0.8	31
83	N-type pyrazine and triazole-based luminogens with aggregation-enhanced emission characteristics. Chemical Communications, 2015, 51, 10710-10713.	2.2	30
84	Multiple Stimuli Responses of Stereo-Isomers of AIE-Active Ethynylene-Bridged and Pyridyl-Modified Tetraphenylethene. Journal of Physical Chemistry B, 2018, 122, 2165-2176.	1.2	30
85	A side-chain engineering strategy for constructing fluorescent dyes with direct and ultrafast self-delivery to living cells. Chemical Science, 2020, 11, 661-670.	3.7	30
86	Click polymerization: The aurora of polymer synthetic methodology. Journal of Polymer Science Part A, 2017, 55, 616-621.	2.5	29
87	Diversified Photo/Electronic Functions Based on a Simple Chalcone Skeleton: Effects of Substitution Pattern and Molecular Packing. Advanced Functional Materials, 2018, 28, 1706506.	7.8	29
88	Recent progress in the applications of amino–yne click chemistry. Polymer Chemistry, 2021, 12, 2978-2986.	1.9	29
89	The role of amide (n,ï€â^—) transitions in polypeptide clusteroluminescence. Cell Reports Physical Science, 2022, 3, 100716.	2.8	29
90	Stimulus responsive fluorescent hyperbranched polymers and their applications. Science China Chemistry, 2010, 53, 2409-2428.	4.2	28

#	Article	IF	CITATIONS
91	Composites of quaternized poly(pyridylacetylene) and silver nanoparticles: Nanocomposite preparation, conductivity and photoinduced patterning. Journal of Materials Chemistry, 2011, 21, 13627.	6.7	28
92	Facile Polymerization of Water and Triple-Bond Based Monomers toward Functional Polyamides. Macromolecules, 2017, 50, 8554-8561.	2.2	27
93	Aggregation-induced emission: right there shining. Science China Materials, 2019, 62, 1227-1235.	3.5	27
94	Phospholipid-Biomimetic Fluorescent Mitochondrial Probe with Ultrahigh Selectivity Enables In Situ and High-Fidelity Tissue Imaging. Analytical Chemistry, 2017, 89, 6575-6582.	3.2	26
95	A red-emitting cationic hyperbranched polymer: facile synthesis, aggregation-enhanced emission, large Stokes shift, polarity-insensitive fluorescence and application in cell imaging. Polymer Chemistry, 2017, 8, 6277-6282.	1.9	26
96	Investigation of the binding modes between AIE-active molecules and dsDNA by single molecule force spectroscopy. Nanoscale, 2015, 7, 8939-8945.	2.8	25
97	A Dendritic Supramolecular Complex as Uniform Hybrid Micelle with Dual Structure for Bimodal In Vivo Imaging. Chemistry - A European Journal, 2017, 23, 2802-2810.	1.7	24
98	A unimolecular theranostic system with H ₂ O ₂ -specific response and AIE-activity for doxorubicin releasing and real-time tracking in living cells. RSC Advances, 2018, 8, 10975-10979.	1.7	24
99	Functional poly(phenylacetylene)s carrying azobenzene pendants: Polymer synthesis, photoisomerization behaviors, and liquid-crystalline property. Polymer, 2011, 52, 5290-5301.	1.8	23
100	Chitosan rods reinforced by aligned multiwalled carbon nanotubes via magnetic-field-assistant in situ precipitation. Carbohydrate Polymers, 2011, 84, 1126-1132.	5.1	23
101	Microscopic visualization and mechanism investigation of the crystal jumping behavior of a cyclic chalcone derivative. Materials Chemistry Frontiers, 2020, 4, 651-660.	3.2	23
102	Facile Preparation of Light Refractive Poly(aroxycarbonyltriazole)s by Metalâ€Free Click Polymerization. Macromolecular Chemistry and Physics, 2014, 215, 1036-1041.	1.1	22
103	Decompositionâ€Assembly of Tetraphenylethylene Nanoparticles With Uniform Size and Aggregationâ€Induced Emission property. Macromolecular Rapid Communications, 2012, 33, 1584-1589.	2.0	21
104	Poly(phenylene-ethynylene-alt-tetraphenylethene) copolymers: aggregation enhanced emission, induced circular dichroism, tunable surface wettability and sensitive explosive detection. Polymer Chemistry, 2017, 8, 2353-2362.	1.9	21
105	Click Chemistry: A Powerful and Versatile Methodology for Preparation of Ferrocene-Containing Polymers. Journal of Inorganic and Organometallic Polymers and Materials, 2015, 25, 37-46.	1.9	20
106	Preparation of water soluble poly(aniline) and its gas-sensitivity. Green Chemistry, 2005, 7, 507.	4.6	19
107	Visualizing and monitoring interface structures and dynamics by luminogens with aggregation-induced emission. Journal of Applied Physics, 2019, 126, 050901.	1.1	19
108	The mysterious blue emission around 440 nm in carbonylâ€based aliphatic clusteroluminogens. Journal of Polymer Science, 2022, 60, 2127-2135.	2.0	19

#	Article	IF	CITATIONS
109	An air-stable supported $Cu(\theta\dagger)$ catalyst for azide-alkyne click polymerization. Science China Chemistry, 2015, 58, 1748-1752.	4.2	18
110	Different amine-functionalized poly(diphenylsubstituted acetylenes) from the same precursor. Polymer Chemistry, 2016, 7, 5312-5321.	1.9	18
111	Thermosensitive Microgels Containing AlEgens: Enhanced Luminescence and Distinctive Photochromism for Dynamic Anticounterfeiting. ACS Applied Materials & Distinctive 17794-17805.	4.0	17
112	New tetraphenylpyridinium-based luminogens with aggregation-induced emission characteristics. Science China Chemistry, 2013, 56, 1187-1190.	4.2	16
113	A novel post-polymerization modification route to functional poly(disubstituted acetylenes) through phenol–yne click reaction. Polymer Chemistry, 2017, 8, 2630-2639.	1.9	16
114	Post-functionalization of disubstituted polyacetylenes via click chemistry. Science China Chemistry, 2011, 54, 1948-1954.	4.2	15
115	Effective enhancement of the emission efficiency of tetraphenylporphyrin in solid state by tetraphenylethene modification. Chinese Chemical Letters, 2019, 30, 143-148.	4.8	15
116	A new strategy of post-polymerization modification to prepare functionalized poly(disubstituted) Tj ETQq0 0 0	rgBT_lOver	lock 10 Tf 50 4
117	Indium-catalyzed polycyclotrimerization of diynes: a facile route to prepare regioregular hyperbranched polyarylenes. Polymer Chemistry, 2014, 5, 5890-5894.	1.9	14
118	Electric field induced cis-to-trans isomerization of polyphenylacetylene in solid state. Chemical Communications, 2002, , 1222-1223.	2.2	13
119	A throughway to functional poly(disubstituted acetylenes): a combination of the activated ester strategy with click reaction. Polymer Chemistry, 2015, 6, 7958-7963.	1.9	13
120	Selective, switchable fluorescent probe for heparin based onÂaggregation-induced emission. Analytical Biochemistry, 2016, 514, 48-54.	1.1	13
121	A macrocyclic 1,4-bis(4-pyridylethynyl)benzene showing unique aggregation-induced emission properties. Chemical Communications, 2016, 52, 10365-10368.	2.2	13
122	Synthesis of liquid crystalline poly(1-pentyne)s and fabrication of polyacetylene–perovskite hybrids. Journal of Polymer Science Part A, 2006, 44, 3538-3550.	2.5	12
123	Probing the pH-dependent chain dynamics of poly(acrylate acid) in concentrated solution by using a cationic AIE fluorophore. Science China Chemistry, 2013, 56, 1253-1257.	4.2	12
124	Synthesis of Functional Poly(disubstituted acetylene)s through the Post-Polymerization Modification Route. Chemical Record, 2015, 15, 524-532.	2.9	12
125	Transition-Metal-Free Polymerization of Bromoalkynes and Phenols. Macromolecules, 2019, 52, 2949-2955.	2.2	12
126	3,4,5-Triphenyl-1,2,4-triazole-based multifunctional n-type AlEgen. Science China Chemistry, 2017, 60, 635-641.	4.2	11

#	Article	IF	CITATIONS
127	Polymerization of 1-chloro-2-benzaldehyde-acetylene using an NHC-Pd/AgOTf catalyst and post-polymerization modification. Polymer Chemistry, 2017, 8, 5546-5553.	1.9	11
128	DETECTION OF ctDNA WITH WATER SOLUBLE TETRAPHENYLENE-BASED FLUORESCENCE PROBE. Acta Polymerica Sinica, 2011, 011, 1079-1085.	0.0	11
129	Kinetic Insights into Marangoni Effect-Assisted Preparation of Ultrathin Hydrogel Films. Langmuir, 2018, 34, 12310-12317.	1.6	10
130	Monosaccharide-functionalized poly(phenylacetylenes): in situ polymerization, hybridization with MWCNTs, and application in the reinforcement of chitosan rods. Polymer Chemistry, 2014, 5, 6216-6224.	1.9	9
131	A Novel Fluorescent Skeleton from Disubstituted Thiochromenones via Nickel-Catalyzed Cycloaddition of Sulfobenzoic Anhydrides with Alkynes. Organic Letters, 2019, 21, 6280-6284.	2.4	9
132	Visualization and quantification of cellular RNA production and degradation using a combined fluorescence and mass spectrometry characterization assay. Chemical Communications, 2019, 55, 8321-8324.	2.2	7
133	Change in aggregation state of a porphyrin-perylene-diimide dyad induced by trifluoroacetic acid. Science Bulletin, 2008, 53, 209-214.	1.7	6
134	Poly(1-halogen-2-phenylacetylenes) containing tetraphenylethene units: polymer synthesis, unique emission behaviours and application in explosive detection. Materials Chemistry Frontiers, 2022, 6, 368-378.	3.2	6
135	Probing the effects of external species on poly(acrylate acid) chain dynamics by using cationic AIE-active fluorophore. Science China Chemistry, 2016, 59, 218-224.	4.2	5
136	Polymerization of 1-chloro-2-phenylacetylene derivatives by using a Brookhart-type catalyst. Polymer Chemistry, 2019, 10, 4801-4809.	1.9	5
137	<i>In situ</i> formation of tetraphenylethylene nano-structures on microgels inside living cells via reduction-responsive self-assembly. Nanoscale, 2021, 13, 138-149.	2.8	5
138	CHCl3-Dependent Emission Color and Jumping Behavior of Cyclic Chalcone Single Crystals: The Halogen Bond Network Effect. Crystals, 2021, 11, 530.	1.0	4
139	Dually Responsive Nanoparticles for Drug Delivery Based on Quaternized Chitosan. International Journal of Molecular Sciences, 2022, 23, 7342.	1.8	4
140	High strength chitosan rod reinforced by non-covalent functionalized multiwalled carbon nanotubes via an in situ precipitation method. RSC Advances, 2016, 6, 112634-112640.	1.7	3
141	Pyrene-Functionalized Polyacetylenes: Synthesis and Photoluminescence Property. Polymers, 2019, 11, 1366.	2.0	3
142	Synergetic enhancement of photoconductivity in oxotitanium phthalocyanine nanocrystalline/fluoronone-based azo/BAH composite photoreceptors. Progress in Natural Science: Materials International, 2004, 14, 1095-1098.	1.8	2
143	Thin films of porphyrin-perylene molecular array fabricated by electrophoresis methodology. Science Bulletin, 2005, 50, 2157-2160.	1.7	2
144	Hydrogel-assisted delivery of lipophilic molecules into aqueous medium for transdermal medication based on environment-specific, regioselective adsorption of graphene oxides. Journal of Materials Chemistry B, 2021, 9, 1804-1810.	2.9	2

#	Article	IF	CITATIONS
145	Charge transport: through space keeps up with the pace. Science China Chemistry, 2015, 58, 831-832.	4.2	1
146	A multifunctional piperazine-modified tetraphenylethene derivative: Hazardous chemical detection and lysosome-targeted cell imaging. Journal of Luminescence, 2022, 250, 119068.	1.5	1
147	Construction of oriented thin film via C–Fâ√H–C intermolecular interaction. Materials Letters, 2006, 60, 2379-2382.	1.3	O
148	Red-Emitting AIE Materials., 0,, 155-167.		0
149	Frontispiece: Phenolâ€yne Click Polymerization: An Efficient Technique to Facilely Access Regio―and Stereoregular Poly(vinylene ether ketone)s. Chemistry - A European Journal, 2017, 23, .	1.7	0