Wenzheng Yu

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/2287449/wenzheng-yu-publications-by-year.pdf

Version: 2024-04-25

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

96 46 2,523 30 g-index h-index citations papers 10.8 105 5.92 3,237 L-index avg, IF ext. citations ext. papers

#	Paper	IF	Citations
96	Copper doped Fe-N-C as an excellent Fenton-like catalyst for membrane fouling mitigation against natural organic matters at neutral pH. <i>Journal of Cleaner Production</i> , 2022 , 335, 130368	10.3	O
95	Dual-site supported graphene oxide membrane with enhanced permeability and selectivity. <i>Journal of Membrane Science</i> , 2022 , 646, 120223	9.6	0
94	Efficient anodic chemical conversion to boost hydrogen evolution with low energy consumption over cobalt-doped nickel sulfide electrocatalyst. <i>Chemical Engineering Journal</i> , 2022 , 433, 134472	14.7	3
93	Reducing ROS generation and accelerating the photocatalytic degradation rate of PPCPs at neutral pH by doping Fe-N-C to g-C3N4. <i>Applied Catalysis B: Environmental</i> , 2022 , 301, 120790	21.8	6
92	Dynamic variations in DOM and DBPs formation potential during surface water treatment by ozonation-nanofiltration: Using spectroscopic indices approach. <i>Chemical Engineering Journal</i> , 2022 , 427, 132010	14.7	3
91	Preparation and evaluation of a high performance Ti3C2Tx-MXene membrane for drinking water treatment. <i>Journal of Membrane Science</i> , 2022 , 120469	9.6	2
90	The role of medium molecular weight organics on reducing disinfection by-products and fouling prevention in nanofiltration <i>Water Research</i> , 2022 , 215, 118263	12.5	3
89	Release of dissolved organic carbon from biochar and formation of humic-like component during photoreaction: Effects of Ca2+ and pH. <i>Water Research</i> , 2022 , 118616	12.5	0
88	The influence of crystal structure and formation path of precursor on phosphate adsorption during oxidation-hydrolysis phase transition of siderite. <i>Chemical Engineering Journal</i> , 2021 , 431, 133358	14.7	0
87	Identifying active concentrations of biopolymers for enhancing membrane nanofiltration performance: From bench-scale tests to real production considerations. <i>Science of the Total Environment</i> , 2021 , 818, 151808	10.2	Ο
86	Towards microplastics contribution for membrane biofouling and disinfection by-products precursors: The effect on microbes. <i>Journal of Hazardous Materials</i> , 2021 , 426, 127797	12.8	2
85	Targeting membrane fouling with low dose oxidant in drinking water treatment: Beneficial effect and biological mechanism <i>Water Research</i> , 2021 , 209, 117953	12.5	O
84	The influence of various additives on coagulation process at different dosing point: From a perspective of structure properties. <i>Journal of Environmental Sciences</i> , 2021 , 101, 168-176	6.4	2
83	The Influence of Small Organic Molecules on Coagulation from the Perspective of Hydrolysis Competition and Crystallization. <i>Environmental Science & Environmental Science & E</i>	10.3	7
82	Enhancing ultrafiltration performance by gravity-driven up-flow slow biofilter pre-treatment to remove natural organic matters and biopolymer foulants. <i>Water Research</i> , 2021 , 195, 117010	12.5	8
81	Evaluating and improving the reliability of the UV-persulfate method for the determination of TOC/DOC in surface waters. <i>Water Research</i> , 2021 , 196, 116918	12.5	3
80	Unraveling membrane fouling induced by chlorinated water versus surface water: biofouling properties and microbiological investigation. <i>Engineering</i> , 2021 ,	9.7	3

(2020-2021)

79	Comparative investigation on removal characteristics of tetracycline from water by modified wood membranes with different channel walls. <i>Science of the Total Environment</i> , 2021 , 775, 145617	10.2	3	
78	Contribution of bacterial extracellular polymeric substances (EPS) in surface water purification. <i>Environmental Pollution</i> , 2021 , 280, 116998	9.3	2	
77	Iron-nickel bimetallic metal-organic frameworks as bifunctional Fenton-like catalysts for enhanced adsorption and degradation of organic contaminants under visible light: Kinetics and mechanistic studies. <i>Journal of Hazardous Materials</i> , 2021 , 401, 123261	12.8	46	
76	Revisiting the bioelectrochemical system based biosensor for organic sensing and the prospect on constructed wetland-microbial fuel cell. <i>Chemosphere</i> , 2021 , 264, 128532	8.4	12	
75	A comparison of the coagulation performance of PAFC and FeSO4 for the treatment of leach liquor from Stevia processing. <i>Separation and Purification Technology</i> , 2021 , 255, 117680	8.3	5	
74	Evaluation of a novel composite chitosangraphene oxide membrane for NOM removal during water treatment. <i>Journal of Environmental Chemical Engineering</i> , 2021 , 9, 105716	6.8	6	
73	Beneficial impacts of natural biopolymers during surface water purification by membrane nanofiltration. <i>Water Research</i> , 2021 , 201, 117330	12.5	4	
72	Modulation of dual centers on cobalt-molybdenum oxides featuring synergistic effect of intermediate activation and radical mediator for electrocatalytic urea splitting. <i>Nano Energy</i> , 2021 , 87, 106217	17.1	14	
71	A new process combination with high water flux and superior treatment performance for stevia sugar liquor. <i>Chemical Engineering Journal</i> , 2021 , 421, 129901	14.7	О	
70	The stimulation of microbial activity by microplastic contributes to membrane fouling in ultrafiltration. <i>Journal of Membrane Science</i> , 2021 , 635, 119477	9.6	5	
69	Removal of F and organic matter from coking wastewater by coupling dosing FeCl and AlCl. <i>Journal of Environmental Sciences</i> , 2021 , 110, 2-11	6.4	2	
68	Biofouling by ultra-low pressure filtration of surface water: The paramount role of initial available biopolymers. <i>Journal of Membrane Science</i> , 2021 , 640, 119740	9.6	1	
67	Discovery of Welcome Biopolymers in Surface Water: Improvements in Drinking Water Production. <i>Environmental Science & Environmental &</i>	10.3	6	
66	Abatement of the membrane biofouling: Performance of an in-situ integrated bioelectrochemical-ultrafiltration system. <i>Water Research</i> , 2020 , 179, 115892	12.5	10	
65	Insight into the effect of in-situ galvanic micro-coagulation on membrane fouling mitigation treating surface water. <i>Journal of Membrane Science</i> , 2020 , 610, 118234	9.6	2	
64	Citric acid modified wood membranes for efficient adsorption of tetracycline: Effect of alkali pretreatment concentration and adsorption mechanism. <i>Chemical Engineering Journal</i> , 2020 , 393, 1247	4 ¹ 4.7	12	
63	Transformation of siderite to goethite by humic acid in the natural environment. <i>Communications Chemistry</i> , 2020 , 3,	6.3	15	

61	Two-dimensional MXene incorporated graphene oxide composite membrane with enhanced water purification performance. <i>Journal of Membrane Science</i> , 2020 , 593, 117431	9.6	99
60	Tracking metal ion-induced organic membrane fouling in nanofiltration by adopting spectroscopic methods: Observations and predictions. <i>Science of the Total Environment</i> , 2020 , 708, 135051	10.2	3
59	The Fe-N-C oxidase-like nanozyme used for catalytic oxidation of NOM in surface water. <i>Water Research</i> , 2020 , 171, 115491	12.5	15
58	Evaluation of a novel polyamide-polyethylenimine nanofiltration membrane for wastewater treatment: Removal of Cu2+ ions. <i>Chemical Engineering Journal</i> , 2020 , 392, 123769	14.7	23
57	The formation of planar crystalline flocs of FeOOH in Fe(II) coagulation and the influence of humic acid. <i>Water Research</i> , 2020 , 185, 116250	12.5	12
56	Enhancement of phosphate adsorption during mineral transformation of natural siderite induced by humic acid: Mechanism and application. <i>Chemical Engineering Journal</i> , 2020 , 393, 124730	14.7	17
55	Regulating the Interlayer Spacing of Graphene Oxide Membranes and Enhancing their Stability by Use of PACl. <i>Environmental Science & Enhancing Science & Company</i> , 2019 , 53, 11949-11959	10.3	23
54	Application of Integrated Bioelectrochemical-Wetland Systems for Future Sustainable Wastewater Treatment. <i>Environmental Science & Environmental Scien</i>	10.3	22
53	The variation of flocs activity during floc breakage and aging, adsorbing phosphate, humic acid and clay particles. <i>Water Research</i> , 2019 , 155, 131-141	12.5	29
52	2D kaolin ultrafiltration membrane with ultrahigh flux for water purification. <i>Water Research</i> , 2019 , 156, 425-433	12.5	21
51	Effect of pre-coagulation using different aluminium species on crystallization of cake layer and membrane fouling. <i>Npj Clean Water</i> , 2019 , 2,	11.2	3
50	Combining Magnetic Ion Exchange Media and Microsand before Coagulation as Pretreatment for Submerged Ultrafiltration: Biopolymers and Small Molecular Weight Organic Matter. <i>ACS Sustainable Chemistry and Engineering</i> , 2019 , 7, 18566-18573	8.3	5
49	Prevention of UF membrane fouling in drinking water treatment by addition of HO during membrane backwashing. <i>Water Research</i> , 2019 , 149, 394-405	12.5	24
48	Ultrafiltration and nanofiltration membrane fouling by natural organic matter: Mechanisms and mitigation by pre-ozonation and pH. <i>Water Research</i> , 2018 , 139, 353-362	12.5	89
47	Maximizing the energy harvest from a microbial fuel cell embedded in a constructed wetland. <i>Applied Energy</i> , 2018 , 214, 83-91	10.7	27
46	The antifouling performance of an ultrafiltration membrane with pre-deposited carbon nanofiber layers for water treatment. <i>Journal of Membrane Science</i> , 2018 , 557, 87-95	9.6	18
45	Applying multiple bio-cathodes in constructed wetland-microbial fuel cell for promoting energy production and bioelectrical derived nitrification-denitrification process. <i>Chemical Engineering Journal</i> , 2018 , 344, 105-113	14.7	62
44	Effect of crystallization of settled aluminum hydroxide precipitate on "dissolved Al". <i>Water Research</i> , 2018 , 143, 346-354	12.5	13

(2015-2017)

43	Effect of intermittent ultrasound on controlling membrane fouling with coagulation pre-treatment: Significance of the nature of adsorbed organic matter. <i>Journal of Membrane Science</i> , 2017 , 535, 168-17	79.6	21	
42	Membrane fouling by extracellular polymeric substances after ozone pre-treatment: Variation of nano-particles size. <i>Water Research</i> , 2017 , 120, 146-155	12.5	48	
41	Coagulation of surface water: Observations on the significance of biopolymers. <i>Water Research</i> , 2017 , 126, 144-152	12.5	49	
40	Mitigation of NOM fouling of ultrafiltration membranes by pre-deposited heated aluminum oxide particles with different crystallinity. <i>Journal of Membrane Science</i> , 2017 , 544, 359-367	9.6	13	
39	Development of a stable cation modified graphene oxide membrane for water treatment. <i>2D Materials</i> , 2017 , 4, 045006	5.9	50	
38	Trivalent metal cation cross-linked graphene oxide membranes for NOM removal in water treatment. <i>Journal of Membrane Science</i> , 2017 , 542, 31-40	9.6	59	
37	Application of polyacrylamide flocculation with and without alum coagulation for mitigating ultrafiltration membrane fouling: Role of floc structure and bacterial activity. <i>Chemical Engineering Journal</i> , 2017 , 307, 41-48	14.7	49	
36	Prevention of PVDF ultrafiltration membrane fouling by coating MnO2 nanoparticles with ozonation. <i>Scientific Reports</i> , 2016 , 6, 30144	4.9	21	
35	Application of pulsed UV-irradiation and pre-coagulation to control ultrafiltration membrane fouling in the treatment of micro-polluted surface water. <i>Water Research</i> , 2016 , 107, 83-92	12.5	43	
34	Coagulation and oxidation for controlling ultrafiltration membrane fouling in drinking water treatment: Application of ozone at low dose in submerged membrane tank. <i>Water Research</i> , 2016 , 95, 1-10	12.5	91	
33	Evaluation of ferrate as a coagulant aid/oxidant pretreatment for mitigating submerged ultrafiltration membrane fouling in drinking water treatment. <i>Chemical Engineering Journal</i> , 2016 , 298, 234-242	14.7	48	
32	Effect of sludge retention on UF membrane fouling: The significance of sludge crystallization and EPS increase. <i>Water Research</i> , 2015 , 83, 319-28	12.5	44	
31	Performance of an integrated granular media IUltrafiltration membrane process for drinking water treatment. <i>Journal of Membrane Science</i> , 2015 , 492, 164-172	9.6	28	
30	Enhanced removal of manganese in organic-rich surface water by combined sodium hypochlorite and potassium permanganate during drinking water treatment. <i>RSC Advances</i> , 2015 , 5, 27970-27977	3.7	12	
29	Pre-coagulation on the submerged membrane fouling in nano-scale: Effect of sedimentation process. <i>Chemical Engineering Journal</i> , 2015 , 262, 676-682	14.7	35	
28	Dependence of floc properties on coagulant type, dosing mode and nature of particles. <i>Water Research</i> , 2015 , 68, 119-26	12.5	48	
27	Application of Fe(II)/K2MnO4 as a pre-treatment for controlling UF membrane fouling in drinking water treatment. <i>Journal of Membrane Science</i> , 2015 , 473, 283-291	9.6	36	
26	Contribution of Fe3O4 nanoparticles to the fouling of ultrafiltration with coagulation pre-treatment. <i>Scientific Reports</i> , 2015 , 5, 13067	4.9	6	

25	Modification of ultrafiltration membrane with nanoscale zerovalent iron layers for humic acid fouling reduction. <i>Water Research</i> , 2015 , 71, 140-9	12.5	44
24	Effect of low dosage of coagulant on the ultrafiltration membrane performance in feedwater treatment. <i>Water Research</i> , 2014 , 51, 277-83	12.5	49
23	Pre-treatment for ultrafiltration: effect of pre-chlorination on membrane fouling. <i>Scientific Reports</i> , 2014 , 4, 6513	4.9	33
22	Comparison of iron (III) and alum salt on ultrafiltration membrane fouling by alginate. <i>Desalination</i> , 2014 , 354, 153-159	10.3	15
21	Investigation of pre-coagulation and powder activate carbon adsorption on ultrafiltration membrane fouling. <i>Journal of Membrane Science</i> , 2014 , 459, 157-168	9.6	58
20	Investigation of the property of kaolinਬlum flocs at acidic pH. <i>Colloids and Surfaces A:</i> Physicochemical and Engineering Aspects, 2014 , 443, 177-181	5.1	11
19	The pre-treatment of submerged ultrafiltration membrane by coagulation Effect of polyacrylamide as a coagulant aid. <i>Journal of Membrane Science</i> , 2013 , 446, 50-58	9.6	49
18	Comparison of submerged coagulation and traditional coagulation on membrane fouling: Effect of active flocs. <i>Desalination</i> , 2013 , 309, 11-17	10.3	14
17	Effect of humic acid on coagulation performance during aggregation at low temperature. <i>Chemical Engineering Journal</i> , 2013 , 223, 412-417	14.7	20
16	Comparison of FeCl3 and alum pre-treatment on UF membrane fouling. <i>Chemical Engineering Journal</i> , 2013 , 234, 158-165	14.7	49
15	Effect of iron/aluminum hydrolyzed precipitate layer on ultrafiltration membrane. <i>Desalination</i> , 2013 , 330, 16-21	10.3	16
14	Membrane fouling by Fe-Humic cake layers in nano-scale: Effect of in-situ formed Fe(III) coagulant. Journal of Membrane Science, 2013, 431, 47-54	9.6	16
13	Aggregation of nano-sized alumflumic primary particles. <i>Separation and Purification Technology</i> , 2012 , 99, 44-49	8.3	13
12	Effect of dosage strategy on Al-humic flocs growth and re-growth. <i>Colloids and Surfaces A: Physicochemical and Engineering Aspects</i> , 2012 , 404, 106-111	5.1	26
11	Characterization of organic membrane foulants in a submerged membrane bioreactor with pre-ozonation using three-dimensional excitation-emission matrix fluorescence spectroscopy. <i>Water Research</i> , 2011 , 45, 2111-21	12.5	195
10	Effect of two-stage coagulant addition on coagulation-ultrafiltration process for treatment of humic-rich water. <i>Water Research</i> , 2011 , 45, 4260-8	12.5	67
9	Breakage and re-growth of flocs: effect of additional doses of coagulant species. <i>Water Research</i> , 2011 , 45, 6718-24	12.5	42
8	Influence of flocs breakage process on submerged ultrafiltration membrane fouling. <i>Journal of Membrane Science</i> , 2011 , 385-386, 194-199	9.6	24

LIST OF PUBLICATIONS

7	The role of mixing conditions on floc growth, breakage and re-growth. <i>Chemical Engineering Journal</i> , 2011 , 171, 425-430	14.7	83
6	Effect of enhanced coagulation by KMnO(4) on the fouling of ultrafiltration membranes. <i>Water Science and Technology</i> , 2011 , 64, 1497-502	2.2	13
5	Effect of Coagulation and Applied Breakage Shear on the Regrowth of Kaolin Flocs. <i>Environmental Engineering Science</i> , 2010 , 27, 483-492	2	15
4	Breakage and regrowth of Al-humic flocseffect of additional coagulant dosage. <i>Environmental Science & Environmental Science</i>	10.3	77
3	Breakage and re-growth of flocs formed by charge neutralization using alum and polyDADMAC. <i>Water Research</i> , 2010 , 44, 3959-65	12.5	59
2	The effect of additional coagulant on the re-growth of alumRaolin flocs. <i>Separation and Purification Technology</i> , 2010 , 74, 305-309	8.3	37
1	Breakage and re-growth of flocs formed by alum and PACl. <i>Powder Technology</i> , 2009 , 189, 439-443	5.2	92