
Henrique Alves

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2287339/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	PINK1/PARKIN signalling in neurodegeneration and neuroinflammation. Acta Neuropathologica Communications, 2020, 8, 189.	5.2	204
2	The CRB1 and adherens junction complex proteins in retinal development and maintenance. Progress in Retinal and Eye Research, 2014, 40, 35-52.	15.5	75
3	Human iPSC-Derived Retinas Recapitulate the Fetal CRB1 CRB2 Complex Formation and Demonstrate that Photoreceptors and MÃ1⁄4ller Glia Are Targets of AAV5. Stem Cell Reports, 2019, 12, 906-919.	4.8	75
4	Loss of CRB2 in the mouse retina mimics human retinitis pigmentosa due to mutations in the CRB1 gene. Human Molecular Genetics, 2013, 22, 35-50.	2.9	74
5	Gene therapy into photoreceptors and Müller glial cells restores retinal structure and function in CRB1 retinitis pigmentosa mouse models. Human Molecular Genetics, 2015, 24, 3104-3118.	2.9	65
6	Targeted Ablation of Crb1 and Crb2 in Retinal Progenitor Cells Mimics Leber Congenital Amaurosis. PLoS Genetics, 2013, 9, e1003976.	3.5	64
7	Transthyretin is up-regulated by sex hormones in mice liver. Molecular and Cellular Biochemistry, 2008, 317, 137-142.	3.1	57
8	Animal Models of Bone Loss in Inflammatory Arthritis: from Cytokines in the Bench to Novel Treatments for Bone Loss in the Bedside—a Comprehensive Review. Clinical Reviews in Allergy and Immunology, 2016, 51, 27-47.	6.5	50
9	PALS1 Is Essential for Retinal Pigment Epithelium Structure and Neural Retina Stratification. Journal of Neuroscience, 2011, 31, 17230-17241.	3.6	48
10	17β-Estradiol Induces Transthyretin Expression in Murine Choroid Plexus via an Oestrogen Receptor Dependent Pathway. Cellular and Molecular Neurobiology, 2009, 29, 475-483.	3.3	41
11	Targeted ablation of Crb2 in photoreceptor cells induces retinitis pigmentosa. Human Molecular Genetics, 2014, 23, 3384-3401.	2.9	41
12	Microglia Contribution to the Regulation of the Retinal and Choroidal Vasculature in Age-Related Macular Degeneration. Cells, 2020, 9, 1217.	4.1	39
13	Microarray and Morphological Analysis of Early Postnatal CRB2 Mutant Retinas on a Pure C57BL/6J Genetic Background. PLoS ONE, 2013, 8, e82532.	2.5	35
14	Loss of CRB2 in Müller glial cells modifies a CRB1-associated retinitis pigmentosa phenotype into a Leber congenital amaurosis phenotype. Human Molecular Genetics, 2019, 28, 105-123.	2.9	29
15	5α-dihydrotestosterone up-regulates transthyretin levels in mice and rat choroid plexus via an androgen receptor independent pathway. Brain Research, 2008, 1229, 18-26.	2.2	28
16	CRB2 in immature photoreceptors determines the superior-inferior symmetry of the developing retina to maintain retinal structure and function. Human Molecular Genetics, 2018, 27, 3137-3153.	2.9	26
17	Crumbs 2 prevents cortical abnormalities in mouse dorsal telencephalon. Neuroscience Research, 2016, 108, 12-23.	1.9	25
18	2020 ASGCT Annual Meeting Abstracts. Molecular Therapy, 2020, 28, 1-592.	8.2	24

Henrique Alves

#	Article	IF	CITATIONS
19	Androgen Receptor is Expressed in Murine Choroid Plexus and Downregulated by 5α-Dihydrotestosterone in Male and Female Mice. Journal of Molecular Neuroscience, 2009, 38, 41-49.	2.3	20
20	Progesterone Enhances Transthyretin Expression in the Rat Choroid Plexus In Vitro and In Vivo via Progesterone Receptor. Journal of Molecular Neuroscience, 2011, 44, 152-158.	2.3	19
21	Experimental Arthritis Mouse Models Driven by Adaptive and/or Innate Inflammation. Methods in Molecular Biology, 2017, 1559, 391-410.	0.9	16
22	CRB2 Loss in Rod Photoreceptors Is Associated with Progressive Loss of Retinal Contrast Sensitivity. International Journal of Molecular Sciences, 2019, 20, 4069.	4.1	16
23	AAV Gene Augmentation Therapy for CRB1-Associated Retinitis Pigmentosa. Methods in Molecular Biology, 2018, 1715, 135-151.	0.9	15
24	AAV-CRB2 protects against vision loss in an inducible CRB1 retinitis pigmentosa mouse model. Molecular Therapy - Methods and Clinical Development, 2021, 20, 423-441.	4.1	14
25	Crumbs2 mediates ventricular layer remodelling to form theÂspinal cord central canal. PLoS Biology, 2020, 18, e3000470.	5.6	12
26	TRAP1 in Oxidative Stress and Neurodegeneration. Antioxidants, 2021, 10, 1829.	5.1	12
27	Dendritic Cell-Specific Deletion of β-Catenin Results in Fewer Regulatory T-Cells without Exacerbating Autoimmune Collagen-Induced Arthritis. PLoS ONE, 2015, 10, e0142972.	2.5	10
28	Defining Phenotype, Tropism, and Retinal Gene Therapy Using Adeno-Associated Viral Vectors (AAVs) in New-Born Brown Norway Rats with a Spontaneous Mutation in Crb1. International Journal of Molecular Sciences, 2021, 22, 3563.	4.1	9
29	CD4 ⁺ CCR6 ⁺ TÂcells, but not γδTÂcells, are important for the ILâ€23Râ€dependent progression of antigenâ€induced inflammatory arthritis in mice. European Journal of Immunology, 2020, 50, 245-255.	2.9	7
30	Microglial Cell Dysfunction in CRB1-Associated Retinopathies. Advances in Experimental Medicine and Biology, 2019, 1185, 159-163.	1.6	6
31	IL-23 receptor deficiency results in lower bone mass via indirect regulation of bone formation. Scientific Reports, 2021, 11, 10244.	3.3	4
32	NTPDase2 as a Surface Marker to Isolate Flow Cytometrically a M�ller Glial Cell Enriched Population from Dissociated Neural Retinae. Journal of Neuroscience and Neurosurgery, 2018, 1, .	0.1	2
33	AAV-Mediated Gene Therapy for CRB1-Hereditary Retinopathies. , 0, , .		1
34	A2.34â€Specific deletion of β-catenin signalling in dendritic cells results in lower Treg expression without influencing the severity of collagen-induced arthritis. Annals of the Rheumatic Diseases, 2015, 74, A29.3-A30.	0.9	0
35	A3.08â€Exploring the collagen induced arthritis model for arthralgia. Annals of the Rheumatic Diseases, 2016, 75, A35.2-A35.	0.9	0
36	A2.31â€Immunisation with type II collagen (CII) alters the IL-23 receptor expression profile compared to naÃ⁻ve conditions. Annals of the Rheumatic Diseases, 2016, 75, A27.3-A28.	0.9	0

#	Article	IF	CITATIONS
37	Crumbs2 mediates ventricular layer remodelling to form the spinal cord central canal. , 2020, 18, e3000470.		0
38	Crumbs2 mediates ventricular layer remodelling to form the spinal cord central canal. , 2020, 18, e3000470.		0
39	Crumbs2 mediates ventricular layer remodelling to form the spinal cord central canal. , 2020, 18, e3000470.		0
40	Crumbs2 mediates ventricular layer remodelling to form the spinal cord central canal. , 2020, 18, e3000470.		0
41	Crumbs2 mediates ventricular layer remodelling to form the spinal cord central canal. , 2020, 18, e3000470.		0
42	Crumbs2 mediates ventricular layer remodelling to form the spinal cord central canal. , 2020, 18, e3000470.		0