Arantxa DavÃ³-Quiñonero

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2287223/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Sponge-like carbon monoliths: Porosity control of 3D-printed carbon supports and its influence on the catalytic performance. Chemical Engineering Journal, 2022, 432, 134218.	6.6	6
2	Intrinsic kinetics of CO2 methanation on low-loaded Ni/Al2O3 catalyst: Mechanism, model discrimination and parameter estimation. Journal of CO2 Utilization, 2022, 57, 101888.	3.3	17
3	Shaping a soot combustion Ce0.5Pr0.5Ox catalyst. Applied Surface Science, 2022, 584, 152513.	3.1	4
4	Monitoring by in situ NAP-XPS of active sites for CO2 methanation on a Ni/CeO2 catalyst. Journal of CO2 Utilization, 2022, 60, 101980.	3.3	12
5	Room Temperature Fabrication of Macroporous Lignin Membranes for the Scalable Production of Black Silicon. Biomacromolecules, 2022, 23, 2512-2521.	2.6	3
6	Kinetics, Model Discrimination, and Parameters Estimation of CO ₂ Methanation on Highly Active Ni/CeO ₂ Catalyst. Industrial & Engineering Chemistry Research, 2022, 61, 10419-10435.	1.8	14
7	Active, selective and stable NiO-CeO2 nanoparticles for CO2 methanation. Fuel Processing Technology, 2021, 212, 106637.	3.7	35
8	Mineral Manganese Oxides as Oxidation Catalysts: Capabilities in the CO-PROX Reaction. ACS Sustainable Chemistry and Engineering, 2021, 9, 6329-6336.	3.2	11
9	Effect of Pr in CO ₂ Methanation Ru/CeO ₂ Catalysts. Journal of Physical Chemistry C, 2021, 125, 12038-12049.	1.5	12
10	High Performance Tunable Catalysts Prepared by Using 3D Printing. Materials, 2021, 14, 5017.	1.3	6
11	PrOx nanoparticles: Active and stable catalysts for soot combustion. Applied Surface Science, 2021, 563, 150183.	3.1	6
12	Effect of Ru loading on Ru/CeO2 catalysts for CO2 methanation. Molecular Catalysis, 2021, 515, 111911.	1.0	15
13	Elucidating the Role of the Metal Catalyst and Oxide Support in the Ru/CeO ₂ -Catalyzed CO ₂ Methanation Mechanism. Journal of Physical Chemistry C, 2021, 125, 25533-25544.	1.5	17
14	Investigations of the Effect of H2 in CO Oxidation over Ceria Catalysts. Catalysts, 2021, 11, 1556.	1.6	3
15	Key″ock Ceria Catalysts for the Control of Diesel Engine Soot Particulate Emissions. ChemCatChem, 2020, 12, 1772-1781.	1.8	12
16	lsotopic and in situ DRIFTS study of the CO2 methanation mechanism using Ni/CeO2 and Ni/Al2O3 catalysts. Applied Catalysis B: Environmental, 2020, 265, 118538.	10.8	199
17	New insights into the role of active copper species in CuO/Cryptomelane catalysts for the CO-PROX reaction. Applied Catalysis B: Environmental, 2020, 267, 118372.	10.8	35
18	Copper‣anthanum Catalysts for NOx and Soot Removal. ChemCatChem, 2020, 12, 6375-6384.	1.8	10

#	Article	IF	CITATIONS
19	Customizable Heterogeneous Catalysts: Nonchanneled Advanced Monolithic Supports Manufactured by 3D-Printing for Improved Active Phase Coating Performance. ACS Applied Materials & Interfaces, 2020, 12, 54573-54584.	4.0	31
20	Insights into the Oxygen Vacancy Filling Mechanism in CuO/CeO ₂ Catalysts: A Key Step Toward High Selectivity in Preferential CO Oxidation. ACS Catalysis, 2020, 10, 6532-6545.	5.5	128
21	Enhancement of the Generation and Transfer of Active Oxygen in Ni/CeO ₂ Catalysts for Soot Combustion by Controlling the Ni–Ceria Contact and the Three-Dimensional Structure. Environmental Science & Technology, 2020, 54, 2439-2447.	4.6	39
22	Design of active sites in Ni/CeO2 catalysts for the methanation of CO2: tailoring the Ni-CeO2 contact. Applied Materials Today, 2020, 19, 100591.	2.3	30
23	Ni/LnOx Catalysts (Ln=La, Ce or Pr) for CO ₂ Methanation. ChemCatChem, 2019, 11, 810-819.	1.8	44
24	CO-PROX Reaction over Co ₃ O ₄ Al ₂ O ₃ Catalysts—Impact of the Spinel Active Phase Faceting on the Catalytic Performance. Journal of Physical Chemistry C, 2019, 123, 20221-20232.	1.5	31
25	Design of Monolithic Supports by 3D Printing for Its Application in the Preferential Oxidation of CO (CO-PrOx). ACS Applied Materials & Interfaces, 2019, 11, 36763-36773.	4.0	33
26	PrO _x catalysts for the combustion of soot generated in diesel engines: effect of CuO and 3DOM structures. Catalysis Science and Technology, 2019, 9, 2553-2562.	2.1	8
27	Improved asymmetrical honeycomb monolith catalyst prepared using a 3D printed template. Journal of Hazardous Materials, 2019, 368, 638-643.	6.5	48
28	Three-dimensionally ordered macroporous PrOx: An improved alternative to ceria catalysts for soot combustion. Applied Catalysis B: Environmental, 2019, 248, 567-572.	10.8	48
29	On the soot combustion mechanism using 3DOM ceria catalysts. Applied Catalysis B: Environmental, 2018, 234, 187-197.	10.8	86
30	Templated Synthesis of Pr-Doped Ceria with Improved Micro and Mesoporosity Porosity, Redox Properties and Catalytic Activity. Catalysis Letters, 2018, 148, 258-266.	1.4	9
31	Macroporous carrier-free Sr-Ti catalyst for NOx storage and reduction. Applied Catalysis B: Environmental, 2018, 220, 524-532.	10.8	22
32	Unexpected stability of CuO/Cryptomelane catalyst under Preferential Oxidation of CO reaction conditions in the presence of CO2 and H2O. Applied Catalysis B: Environmental, 2017, 217, 459-465.	10.8	36
33	Improved CO Oxidation Activity of 3DOM Pr-Doped Ceria Catalysts: Something Other Than an Ordered Macroporous Structure. Catalysts, 2017, 7, 67.	1.6	6
34	Rapidâ€ S can Operando Infrared Spectroscopy. ChemCatChem, 2016, 8, 1905-1908.	1.8	8
35	CuO/cryptomelane catalyst for preferential oxidation of CO in the presence of H ₂ : deactivation and regeneration. Catalysis Science and Technology, 2016, 6, 5684-5692.	2.1	24
36	Role of Hydroxyl Groups in the Preferential Oxidation of CO over Copper Oxide–Cerium Oxide Catalysts. ACS Catalysis, 2016, 6, 1723-1731.	5.5	158

#	Article	IF	CITATIONS
37	Mathematical Modeling of Preferential CO Oxidation Reactions under Advection–Diffusion Conditions in a 3D-Printed Reactive Monolith. Industrial & Engineering Chemistry Research, 0, , .	1.8	о
38	Fabrication of High-κ Dielectric Metal Oxide Films on Topographically Patterned Substrates: Polymer Brush-Mediated Depositions. ACS Applied Materials & Interfaces, 0, , .	4.0	1