Koenraad G F Janssens

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2287222/publications.pdf

Version: 2024-02-01

516710 477307 1,649 34 16 29 citations g-index h-index papers 35 35 35 1409 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Universal cycle counting for non-proportional and random fatigue loading. International Journal of Fatigue, 2020, 133, 105409.	5.7	9
2	DAMASK – The Düsseldorf Advanced Material Simulation Kit for modeling multi-physics crystal plasticity, thermal, and damage phenomena from the single crystal up to the component scale. Computational Materials Science, 2019, 158, 420-478.	3.0	440
3	Proportionally and non-proportionally perturbed fatigue of stainless steel. International Journal of Fatigue, 2018, 110, 42-48.	5.7	7
4	Multiple slip dislocation patterning in a dislocation-based crystal plasticity finite element method. International Journal of Plasticity, 2018, 100, 104-121.	8.8	50
5	Nanoscale characterization of stresses in semiconductor devices. , 2018, , 473-476.		O
6	Crystal plasticity finite element modelling of low cycle fatigue in fcc metals. Journal of the Mechanics and Physics of Solids, 2015, 84, 424-435.	4.8	28
7	An internal variable dependent constitutive cyclic plastic material description including ratcheting calibrated for AISI 316L. Computational Materials Science, 2014, 87, 160-171.	3.0	11
8	Multiaxial fatigue behavior of AISI 316L subjected to strain-controlled and ratcheting paths. International Journal of Fatigue, 2014, 68, 195-208.	5.7	27
9	Computational Analyses of the Thermal Stress Induced by Coolant Mixing in a T-Joint. , 2014, , .		O
10	Cyclic mechanical behavior of 316L: Uniaxial LCF and strain-controlled ratcheting tests. Nuclear Engineering and Design, 2013, 257, 100-108.	1.7	21
11	Cyclic deformation response of AISI 316L at room temperature: Mechanical behaviour, microstructural evolution, physically-based evolutionary constitutive modelling. International Journal of Plasticity, 2013, 47, 143-164.	8.8	134
12	Microscopic analysis of the influence of ratcheting on the evolution of dislocation structures observed in AISI 316L stainless steel during low cycle fatigue. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2013, 587, 1-11.	5.6	27
13	Case study of the applicability of cyclic hardening material descriptions in finite element simulation of cyclic thermal shocks. Fatigue and Fracture of Engineering Materials and Structures, 2011, 34, 562-572.	3.4	4
14	Thermomechanical and isothermal fatigue behavior of 347 and 316L austenitic stainless tube and pipe steels. International Journal of Fatigue, 2011, 33, 683-691.	5.7	44
15	Dislocation structure evolution and its effects on cyclic deformation response of AISI 316L stainless steel. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2011, 528, 3261-3269.	5.6	174
16	Papers from the 2009 TMS Annual Meeting Symposium on Mechanisms, theory, experiments and industrial practice in fatigue. International Journal of Fatigue, 2010, 32, 791-791.	5.7	0
17	An introductory review of cellular automata modeling of moving grain boundaries in polycrystalline materials. Mathematics and Computers in Simulation, 2010, 80, 1361-1381.	4.4	93
18	A computational fatigue analysis of cyclic thermal shock in notched specimens. Nuclear Engineering and Design, 2009, 239, 36-44.	1.7	15

#	Article	IF	CITATIONS
19	Cultural Intelligence in Global Teams. Group and Organization Management, 2006, 31, 124-153.	4.4	139
20	Computing the mobility of grain boundaries. Nature Materials, 2006, 5, 124-127.	27.5	222
21	Introducing Solute Drag in Irregular Cellular Automata Modeling of Grain Growth. Materials Science Forum, 2004, 467-470, 1045-1050.	0.3	5
22	Random grid, three-dimensional, space-time coupled cellular automata for the simulation of recrystallization and grain growth. Modelling and Simulation in Materials Science and Engineering, 2003, 11, 157-171.	2.0	58
23	Thermodynamic and Kinetic Coupling of a Random Grid Cellular Automaton for the Simulation of Grain Growth. Advanced Engineering Materials, 2002, 4, 200-202.	3.5	9
24	Statistical evaluation of the uncertainty of experimentally characterised forming limits of sheet steel. Journal of Materials Processing Technology, 2001, 112, 174-184.	6.3	43
25	Nanoscale characterization of stresses in semiconductor devices by quantitative electron diffraction. Applied Physics Letters, 2000, 77, 412-414.	3.3	15
26	Assessment of the quantitative characterization of localized strain using electron diffraction contrast imaging. Ultramicroscopy, 1997, 69, 151-167.	1.9	9
27	Transmission Electron Diffraction Techniques for NM Scale Strain Measurement in Semiconductors. Materials Research Society Symposia Proceedings, 1995, 406, 479.	0.1	3
28	Transmission Electron Diffraction Techniques for Nm Scale Strain Measurement in Semiconductors. Materials Research Society Symposia Proceedings, 1995, 405, 435.	0.1	5
29	Localised strain characterisation in semiconductor structures using electron diffraction contrast imaging. Materials Science and Technology, 1995, 11, 66-71.	1.6	3
30	Characterization of strain in an advanced semiconductor laser structure with nanometer range resolution using a new algorithm for electron diffraction contrast imaging interpretation. Applied Physics Letters, 1995, 67, 1530-1532.	3.3	12
31	Strain analysis with nanometer resolution using a conventional transmission electron microsopy technique: electron diffraction contrast imaging revisited. Proceedings Annual Meeting Electron Microscopy Society of America, 1995, 53, 168-169.	0.0	0
32	A new software package for interpreting electron diffraction contrast images of arbitrary displacement fields: SIMCON. Microscopy Research and Technique, 1993, 25, 171-172.	2.2	0
33	On the assessment of local stress distributions in integrated circuits. Applied Surface Science, 1993, 63, 119-125.	6.1	23
34	SIMCON: a versatile software package for the simulation of electron diffraction contrast images of arbitrary displacement fields. Ultramicroscopy, 1992, 45, 323-335.	1.9	19