Shengguan Cai

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2287181/publications.pdf

Version: 2024-02-01

		471509	477307
30	983	17	29
papers	citations	h-index	g-index
30	30	30	1275
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Vacuolar H+-pyrophosphatase HVP10 enhances salt tolerance via promoting Na+ translocation into root vacuoles. Plant Physiology, 2022, 188, 1248-1263.	4.8	15
2	Time-Course Comparative Metabolome Analysis of Different Barley Varieties during Malting. Journal of Agricultural and Food Chemistry, 2022, 70, 2051-2059.	5.2	6
3	Evolution of rapid blueâ€light response linked to explosive diversification of ferns in angiosperm forests. New Phytologist, 2021, 230, 1201-1213.	7.3	33
4	Comprehensive dissection of primary metabolites in response to diverse abiotic stress in barley at seedling stage. Plant Physiology and Biochemistry, 2021, 161, 54-64.	5 . 8	20
5	Multiâ€Omics Analysis Reveals the Mechanism Underlying the Edaphic Adaptation in Wild Barley at Evolution Slope (Tabigha). Advanced Science, 2021, 8, e2101374.	11.2	14
6	The zinc finger transcription factor ATF1 regulates aluminum tolerance in barley. Journal of Experimental Botany, 2020, 71, 6512-6523.	4.8	13
7	Transcriptome-Based Analysis of Phosphite-Induced Resistance against Pathogens in Rice. Plants, 2020, 9, 1334.	3 . 5	4
8	Genetic variation of HvXYN1 associated with endoxylanase activity and TAX content in barley (Hordeum vulgare L.). BMC Plant Biology, 2019, 19, 170.	3 . 6	5
9	Molecular Evolution and Interaction of Membrane Transport and Photoreception in Plants. Frontiers in Genetics, 2019, 10, 956.	2.3	21
10	Root and leaf metabolite profiles analysis reveals the adaptive strategies to low potassium stress in barley. BMC Plant Biology, 2018, 18, 187.	3.6	47
11	Association mapping for total polyphenol content, total flavonoid content and antioxidant activity in barley. BMC Genomics, 2018, 19, 81.	2.8	45
12	Development of predictive models for total phenolics and free p-coumaric acid contents in barley grain by near-infrared spectroscopy. Food Chemistry, 2017, 227, 342-348.	8.2	31
13	Isobaric Tags for Relative and Absolute Quantitation Proteomic Analysis of Germinating Barley under Gibberellin and Abscisic Acid Treatments. Journal of Agricultural and Food Chemistry, 2017, 65, 2248-2257.	5.2	6
14	Evolutionary Conservation of ABA Signaling for Stomatal Closure. Plant Physiology, 2017, 174, 732-747.	4.8	158
15	Speedy Grass Stomata: Emerging Molecular and Evolutionary Features. Molecular Plant, 2017, 10, 912-914.	8.3	36
16	The combined treatment of Mn and Al alleviates the toxicity of Al or Mn stress alone in barley. Acta Physiologiae Plantarum, 2016, 38, 1.	2.1	11
17	ldentification of Quantitative Trait Loci for the Phenolic Acid Contents and Their Association with Agronomic Traits in Tibetan Wild Barley. Journal of Agricultural and Food Chemistry, 2016, 64, 980-987.	5. 2	10
18	The effects of GA and ABA treatments on metabolite profile of germinating barley. Food Chemistry, 2016, 192, 928-933.	8.2	29

#	Article	IF	CITATION
19	Identification of the proteins associated with low potassium tolerance in cultivated and Tibetan wild barley. Journal of Proteomics, 2015, 126, 1-11.	2.4	44
20	Genetic Diversity and QTL Mapping of Thermostability of Limit Dextrinase in Barley. Journal of Agricultural and Food Chemistry, 2015, 63, 3778-3783.	5.2	19
21	Genetic Diversity of Individual Phenolic Acids in Barley and Their Correlation with Barley Malt Quality. Journal of Agricultural and Food Chemistry, 2015, 63, 7051-7057.	5.2	29
22	Comparative Transcriptome Profiling of Two Tibetan Wild Barley Genotypes in Responses to Low Potassium. PLoS ONE, 2014, 9, e100567.	2.5	76
23	Transcriptome profiling reveals mosaic genomic origins of modern cultivated barley. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 13403-13408.	7.1	74
24	The influence of salinity on cell ultrastructures and photosynthetic apparatus of barley genotypes differing in salt stress tolerance. Acta Physiologiae Plantarum, 2014, 36, 1261-1269.	2.1	30
25	The changes in physiological and biochemical traits of Tibetan wild and cultivated barley in response to low phosphorus stress. Soil Science and Plant Nutrition, 2014, 60, 832-842.	1.9	15
26	Grain protein content variation and its association analysis in barley. BMC Plant Biology, 2013, 13, 35.	3.6	95
27	Genome-Wide Association Analysis of Aluminum Tolerance in Cultivated and Tibetan Wild Barley. PLoS ONE, 2013, 8, e69776.	2.5	55
28	EFFECT OF SALINITY AND HEXAVALENT CHROMIUM STRESSES ON UPTAKE AND ACCUMULATION OF MINERAL ELEMENTS IN BARLEY GENOTYPES DIFFERING IN SALT TOLERANCE. Journal of Plant Nutrition, 2012, 35, 827-839.	1.9	24
29	Interactive effects of aluminum and chromium stresses on the uptake of nutrients and the metals in barley. Soil Science and Plant Nutrition, 2011, 57, 68-79.	1.9	17
30	Evolution of phosphate metabolism in Tibetan wild barley to adapt to aluminum stress. Plant and Soil, 0, , .	3.7	1