
Ewa Karwowska

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2287155/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Bioleaching of metals from printed circuit boards supported with surfactant-producing bacteria. Journal of Hazardous Materials, 2014, 264, 203-210.	6.5	109
2	The Atomic Structure of Ti2C and Ti3C2 MXenes is Responsible for Their Antibacterial Activity Toward E. coli Bacteria. Journal of Materials Engineering and Performance, 2019, 28, 1272-1277.	1.2	85
3	Bioremediation of soil polluted with fuels by sequential multiple injection of native microorganisms: Field-scale processes in Poland. Ecological Engineering, 2011, 37, 1895-1900.	1.6	62
4	Biological Activity and Bio-Sorption Properties of the Ti2C Studied by Means of Zeta Potential and SEM. International Journal of Electrochemical Science, 2017, 12, 2159-2172.	0.5	58
5	Synthesis of the RGO/Al2O3 core–shell nanocomposite flakes and characterization of their unique electrostatic properties using zeta potential measurements. Applied Surface Science, 2016, 362, 577-594.	3.1	41
6	Influence of bacteria adsorption on zeta potential of Al2O3 and Al2O3/Ag nanoparticles in electrolyte and drinking water environment studied by means of zeta potential. Surface and Coatings Technology, 2015, 271, 225-233.	2.2	37
7	The influence of metal speciation in combustion waste on the efficiency of Cu, Pb, Zn, Cd, Ni and Cr bioleaching in a mixed culture of sulfur-oxidizing and biosurfactant-producing bacteria. Journal of Hazardous Materials, 2015, 299, 35-41.	6.5	31
8	Influence of modification of Ti ₃ C ₂ MXene with ceramic oxide and noble metal nanoparticles on its antimicrobial properties and ecotoxicity towards selected algae and higher plants. RSC Advances, 2019, 9, 4092-4105.	1.7	31
9	Antibacterial potential of nanocomposite-based materials – a short review. Nanotechnology Reviews, 2017, 6, 243-254.	2.6	30
10	The influence of antibiotics on wastewater treatment processes and the development of antibiotic-resistant bacteria. Water Science and Technology, 2018, 77, 2320-2326.	1.2	30
11	<i>In vitro</i> assessment of antibacterial properties and cytotoxicity of Al ₂ O ₃ –Ag nanopowders. Advances in Applied Ceramics, 2011, 110, 353-359.	0.6	29
12	The Impact of Zeta Potential and Physicochemical Properties of <scp>T</scp> i <scp>O</scp> ₂ â€Based Nanocomposites on Their Biological Activity. International Journal of Applied Ceramic Technology, 2015, 12, 1157-1173.	1.1	28
13	Al ₂ O ₃ –Ag nanopowders: new method of synthesis, characterisation and biocidal activity. Advances in Applied Ceramics, 2011, 110, 108-113.	0.6	26
14	Controlling the Porosity and Biocidal Properties of the Chitosan-Hyaluronate Matrix Hydrogel Nanocomposites by the Addition of 2D Ti3C2Tx MXene. Materials, 2020, 13, 4587.	1.3	26
15	Filtration Materials Modified with 2D Nanocomposites—A New Perspective for Point-of-Use Water Treatment. Materials, 2021, 14, 182.	1.3	26
16	Biodegradable polylactide (PLA) fiber mats containing Al2O3-Ag nanopowder prepared by electrospinning technique — Antibacterial properties. Fibers and Polymers, 2013, 14, 1248-1253.	1.1	25
17	Peculiar Role of the Metallic States on the Nanoâ€ <scp>M</scp> o <scp>S</scp> ₂ Ceramic Particle Surface in Antimicrobial and Antifungal Activity. International Journal of Applied Ceramic Technology, 2015, 12, 885-890.	1.1	18
18	Impact of Al ₂ O ₃ nanopowders characterised by various physicochemical properties on growth of green alga <i>Scenedesmus quadricauda</i> . Advances in Applied Ceramics, 2012, 111, 142-148.	0.6	15

Ewa Karwowska

#	Article	IF	CITATIONS
19	Biosorption properties of RGO/Al2O3 nanocomposite flakes modified with Ag, Au, and Pd for water purification. Journal of Alloys and Compounds, 2017, 724, 869-878.	2.8	14
20	Synthesis and Bioactivity of Reduced Graphene Oxide/Aluminaâ€Noble Metal Nanocomposite Flakes. International Journal of Applied Ceramic Technology, 2016, 13, 856-870.	1.1	12
21	The influence of petroleum products on the methane fermentation process. Journal of Hazardous Materials, 2016, 301, 327-331.	6.5	9
22	Synthesis and Bioactivity of RGO/TiO ₂ -Noble Metal Nanocomposite Flakes. Journal of Nano Research, 0, 47, 33-48.	0.8	9
23	New Non Phyto―and Ecoâ€Toxic Aluminaâ€Stabilized Silver and Praseodymium Nanoparticles. International Journal of Applied Ceramic Technology, 2013, 10, 908-916.	1.1	8
24	Comparative Assessment of Antimicrobial Efficiency of Ionic Silver, Silver Monoxide, and Metallic Silver Incorporated onto an Aluminum Oxide Nanopowder Carrier. Journal of Nanoscience, 2013, 2013, 1-12.	2.6	8
25	Microbiological Air Contamination in Premises of the Primary Health-care. Archives of Environmental Protection, 2013, 39, 51-58.	1.1	7
26	Bacterial adsorption with graphene family materials compared to nano-alumina. Main Group Chemistry, 2017, 16, 175-190.	0.4	6
27	Comparative Assessment of Biocidal Activity of Different RGO/Ceramic Oxide-Ag Nanocomposites. Journal of Nano Research, 0, 47, 89-95.	0.8	5
28	Multifunctional carbon-supported bioactive hybrid nanocomposite (C/GO/NCP) bed for superior water decontamination from waterborne microorganisms. RSC Advances, 2021, 11, 18509-18518.	1.7	5
29	Copper and cadmium in bottom sediments dredged from Wyścigi Pond, Warsaw, Poland—contamination and bioaccumulation study. Environmental Monitoring and Assessment, 2015, 187, 737.	1.3	4
30	Influence of Al2O3/Pr Nanoparticles on Soil, Air and Water Microorganisms. Advanced Structured Materials, 2013, , 1-8.	0.3	4
31	Isolation and identification of bacteria from petroleum derivatives contaminated soil. Acta Microbiologica Polonica, 1995, 44, 297-303.	0.1	4
32	Influence of the Staphylococcus Aureus Bacteria Cells on the Zeta Potential of Graphene Oxide Modified with Alumina Nanoparticles in Electrolyte and Drinking Water Environment. Springer Proceedings in Energy, 2015, , 245-250.	0.2	1
33	Copper and zinc bioleaching from galvanic sludge in mixed microbial cultures. , 2010, , 291-297.		1
34	Acetate kinase activity test - a new approach to biogas production monitoring in the presence of chlorophenols. , 0, , 01-08.		0