Sung Joo Kim

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2287132/publications.pdf Version: 2024-02-01

SUNC LOO KIM

#	Article	IF	CITATIONS
1	Coupling structural evolution and oxygen-redox electrochemistry in layered transition metal oxides. Nature Materials, 2022, 21, 664-672.	27.5	89
2	Microscopic Insight into Tin Nanoparticle Magnesiation. ACS Applied Energy Materials, 2022, 5, 7944-7949.	5.1	2
3	Impact of sodium vanadium oxide (NaV ₃ O ₈ , NVO) material synthesis conditions on charge storage mechanism in Zn-ion aqueous batteries. Physical Chemistry Chemical Physics, 2021, 23, 8607-8617.	2.8	10
4	Unravelling high volumetric capacity of Co ₃ O ₄ nanograin-interconnected secondary particles for lithium-ion battery anodes. Journal of Materials Chemistry A, 2021, 9, 6242-6251.	10.3	18
5	Toward the Understanding of the Reaction Mechanism of Zn/MnO ₂ Batteries Using Non-alkaline Aqueous Electrolytes. Chemistry of Materials, 2021, 33, 7283-7289.	6.7	27
6	Nanoscale Phenomena in Lithium-Ion Batteries. Chemical Reviews, 2020, 120, 6684-6737.	47.7	142
7	Quantitative temporally and spatially resolved X-ray fluorescence microprobe characterization of the manganese dissolution-deposition mechanism in aqueous Zn/α-MnO ₂ batteries. Energy and Environmental Science, 2020, 13, 4322-4333.	30.8	72
8	The Effects of Vanadium Substitution on One-dimensional Tunnel Structures of Cryptomelane: Combined TEM and DFT Study. Microscopy and Microanalysis, 2020, 26, 3162-3164.	0.4	0
9	Unraveling the Dissolutionâ€Mediated Reaction Mechanism of αâ€MnO ₂ Cathodes for Aqueous Znâ€Ion Batteries. Small, 2020, 16, e2005406.	10.0	58
10	New Insights into the Reaction Mechanism of Sodium Vanadate for an Aqueous Zn Ion Battery. Chemistry of Materials, 2020, 32, 2053-2060.	6.7	37
11	Anchored Mediator Enabling Shuttleâ€Free Redox Mediation in Lithiumâ€Oxygen Batteries. Angewandte Chemie - International Edition, 2020, 59, 5376-5380.	13.8	31
12	Voltage decay and redox asymmetry mitigation by reversible cation migration in lithium-rich layered oxide electrodes. Nature Materials, 2020, 19, 419-427.	27.5	328
13	Anchored Mediator Enabling Shuttleâ€Free Redox Mediation in Lithiumâ€Oxygen Batteries. Angewandte Chemie, 2020, 132, 5414-5418.	2.0	10
14	Visualization of regulated nucleation and growth of lithium sulfides for high energy lithium sulfur batteries. Energy and Environmental Science, 2019, 12, 3144-3155.	30.8	104
15	Facile <i>in situ</i> Lithiation and Sodiation Observation in TEM Employing MF (M=Li, Na). Microscopy and Microanalysis, 2019, 25, 1860-1861.	0.4	1
16	Sodium Ion Batteries: Pulverizationâ€Tolerance and Capacity Recovery of Copper Sulfide for Highâ€Performance Sodium Storage (Adv. Sci. 12/2019). Advanced Science, 2019, 6, 1970074.	11.2	0
17	Tailoring sodium intercalation in graphite for high energy and power sodium ion batteries. Nature Communications, 2019, 10, 2598.	12.8	195
18	Pulverizationâ€Tolerance and Capacity Recovery of Copper Sulfide for Highâ€Performance Sodium Storage. Advanced Science, 2019, 6, 1900264.	11.2	39

Sung Joo Kim

#	Article	IF	CITATIONS
19	Toward a low-cost high-voltage sodium aqueous rechargeable battery. Materials Today, 2019, 29, 26-36.	14.2	156
20	Graphene Liquid Cell Electron Microscopy of Initial Lithiation in Co ₃ O ₄ Nanoparticles. ACS Omega, 2019, 4, 6784-6788.	3.5	11
21	One-step synthesis of Pt/a-CoOx core/shell nanocomposites. Applied Microscopy, 2019, 49, 12.	1.4	0
22	Atomic visualization of a non-equilibrium sodiation pathway in copper sulfide. Nature Communications, 2018, 9, 922.	12.8	71
23	Super-Ionic Conduction in Solid-State Li ₇ P ₃ S ₁₁ -Type Sulfide Electrolytes. Chemistry of Materials, 2018, 30, 8764-8770.	6.7	43
24	Accordion Strain Accommodation Mechanism within the Epitaxially Constrained Electrode. ACS Energy Letters, 2018, 3, 1848-1853.	17.4	5
25	Tunable, Endotaxial Inclusion of Crystalline Pt-Based Nanoparticles Inside a High-Quality Bronze TiO2 Matrix. Chemistry of Materials, 2017, 29, 2016-2023.	6.7	2
26	Oneâ€Structureâ€Based Barrier Film for Simultaneous Exclusion of Water and Ultraviolet Light. Advanced Optical Materials, 2017, 5, 1600888.	7.3	5
27	Direct Realization of Complete Conversion and Agglomeration Dynamics of SnO ₂ Nanoparticles in Liquid Electrolyte. ACS Omega, 2017, 2, 6329-6336.	3.5	26
28	Hollow Ag ₂ S nanosphere formation via electron beam-assisted oxidative etching of Ag nanoparticles. Chemical Communications, 2017, 53, 11122-11125.	4.1	8
29	In Situ Transmission Electron Microscopy Graphene Liquid Cell on Chemical Sodiation of Nickel Oxide Nanoparticle. Microscopy and Microanalysis, 2017, 23, 204-205.	0.4	1
30	Real Time Observation of Initial Conversion Reaction of Co3O4 Nanoparticles Using Graphene Liquid Cell Electron Microscopy. Microscopy and Microanalysis, 2017, 23, 1968-1969.	0.4	0
31	<i>In Situ</i> High-Resolution Transmission Electron Microscopy (TEM) Observation of Sn Nanoparticles on SnO ₂ Nanotubes Under Lithiation. Microscopy and Microanalysis, 2017, 23, 1107-1115.	0.4	21
32	In Situ TEM Observation on the Agglomeration of Nanoparticles in the Interface of SnO2. Microscopy and Microanalysis, 2017, 23, 2054-2055.	0.4	2
33	Supercapacitors: Solid‣tate Dual Function Electrochemical Devices: Energy Storage and Lightâ€Emitting Applications (Adv. Energy Mater. 19/2016). Advanced Energy Materials, 2016, 6, .	19.5	1
34	Solid‧tate Dual Function Electrochemical Devices: Energy Storage and Lightâ€Emitting Applications. Advanced Energy Materials, 2016, 6, 1600651.	19.5	27
35	Case Examination on Volume Expansion of Crystalline Si Nanoparticles under Sodiation: In Situ TEM Study Using Graphene Liquid Cells. Microscopy and Microanalysis, 2016, 22, 1370-1371.	0.4	0
36	Atomic structure of defects and interfaces in TiO ₂ -B and Ca:TiO ₂ -B (CaTi ₅ O ₁₁) films grown on SrTiO ₃ . CrystEngComm, 2015, 17, 4309-4315.	2.6	6

Sung Joo Kim

#	Article	IF	CITATIONS
37	p‣i/SnO ₂ /Fe ₂ O ₃ Core/Shell/Shell Nanowire Photocathodes for Neutral pH Water Splitting. Advanced Functional Materials, 2015, 25, 2609-2615.	14.9	47
38	Creating high quality Ca:TiO ₂ -B (CaTi ₅ O ₁₁) and TiO ₂ -B epitaxial thin films by pulsed laser deposition. Chemical Communications, 2015, 51, 8584-8587.	4.1	15
39	Lithiation of Rutile TiO ₂ -Coated Si NWs Observed by in Situ TEM. Chemistry of Materials, 2015, 27, 6929-6933.	6.7	17
40	In-situ TEM Observation of Electrochemical Cycling of a Si/TiO2 Composite NW. Microscopy and Microanalysis, 2014, 20, 454-455.	0.4	0
41	Plasmonic tuning of aluminum doped zinc oxide nanostructures by atomic layer deposition. Physica Status Solidi - Rapid Research Letters, 2014, 8, 948-952.	2.4	25
42	Waterâ€Free Titania–Bronze Thin Films with Superfast Lithiumâ€Ion Transport. Advanced Materials, 2014, 26, 7365-7370.	21.0	31
43	In situ TEM observation of the structural transformation of rutile TiO ₂ nanowire during electrochemical lithiation. Chemical Communications, 2014, 50, 9932.	4.1	34
44	Room-Temperature Polar Ferromagnet ScFeO ₃ Transformed from a High-Pressure Orthorhombic Perovskite Phase. Journal of the American Chemical Society, 2014, 136, 15291-15299.	13.7	78
45	ZnO/CuO Heterojunction Branched Nanowires for Photoelectrochemical Hydrogen Generation. ACS Nano, 2013, 7, 11112-11120.	14.6	275
46	Enhancing thermopower and hole mobility in bulk p-type half-Heuslers using full-Heusler nanostructures. Nanoscale, 2013, 5, 9419.	5.6	44
47	Three-dimensional ZnO/Si broom-like nanowire heterostructures as photoelectrochemical anodes for solar energy conversion. Physica Status Solidi (A) Applications and Materials Science, 2013, 210, 2561-2568.	1.8	9
48	Analysis of defect-free GaSb/GaAs(001) quantum dots grown on the Sb-terminated (2 × 8) surface. Journal of Vacuum Science and Technology B:Nanotechnology and Microelectronics, 2012, 30, .	1.2	14
49	Experimental evidence of ferroelectric negative capacitance in nanoscale heterostructures. Applied Physics Letters, 2011, 99, .	3.3	256