
Matthew Heath

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2286891/publications.pdf Version: 2024-02-01

Μλττμένα Ηελτμ

#	Article	IF	CITATIONS
1	Distinct visual resolution supports aperture shaping in natural and pantomime-grasping Canadian Journal of Experimental Psychology, 2022, 76, 22-28.	0.8	0
2	A Single Bout of Exercise Provides a Persistent Benefit to Cognitive Flexibility. Research Quarterly for Exercise and Sport, 2022, 93, 516-527.	1.4	11
3	Evaluating the efficacy of an iPad® app in determining a single bout of exercise benefit to executive function. Behavior Research Methods, 2022, 54, 2398-2408.	4.0	1
4	Passive exercise increases cerebral blood flow velocity and supports a postexercise executive function benefit. Psychophysiology, 2022, 59, .	2.4	7
5	A summary statistical representation influences perceptions but not visually or memory-guided grasping. Human Movement Science, 2021, 75, 102739.	1.4	2
6	Visually guided saccades and acoustic distractors: no evidence for the remote distractor effect or global effect. Experimental Brain Research, 2021, 239, 59-66.	1.5	0
7	Pupillometry Reveals the Role of Arousal in a Postexercise Benefit to Executive Function. Brain Sciences, 2021, 11, 1048.	2.3	8
8	Exercise intensity-specific changes to cerebral blood velocity do not modulate a postexercise executive function benefit. Neuropsychologia, 2021, 161, 108018.	1.6	8
9	â€~Delaying' a saccade: Preparatory phase cortical hemodynamics evince the neural cost of response inhibition. Brain and Cognition, 2021, 154, 105808.	1.8	4
10	Exercise and Executive Function during Follicular and Luteal Menstrual Cycle Phases. Medicine and Science in Sports and Exercise, 2020, 52, 919-927.	0.4	16
11	A single bout of moderate intensity exercise improves cognitive flexibility: evidence from task-switching. Experimental Brain Research, 2020, 238, 2333-2346.	1.5	6
12	Increased cerebral blood flow supports a single-bout postexercise benefit to executive function: evidence from hypercapnia. Journal of Neurophysiology, 2020, 124, 930-940.	1.8	20
13	A Single Bout of Aerobic Exercise Provides an Immediate "Boost―to Cognitive Flexibility. Frontiers in Psychology, 2020, 11, 1106.	2.1	12
14	Electroencephalographic evidence for a reinforcement learning advantage during motor skill acquisition. Biological Psychology, 2020, 151, 107849.	2.2	6
15	Executive Dysfunction after a Sport-Related Concussion Is Independent of Task-Based Symptom Burden. Journal of Neurotrauma, 2020, 37, 2558-2568.	3.4	7
16	Response suppression produces a switch-costÂfor spatially compatible saccades. Experimental Brain Research, 2019, 237, 1195-1203.	1.5	9
17	Older adults elicit a single-bout post-exercise executive benefit across a continuum of aerobically supported metabolic intensities. Brain Research, 2019, 1712, 197-206.	2.2	20
18	Pro- and antisaccade task-switching: response suppression—and not vector inversion—contributes to a task-set inertia. Experimental Brain Research, 2019, 237, 3475-3484.	1.5	7

#	Article	lF	CITATIONS
19	Tactile-Based Pantomime Grasping: Knowledge of Results is Not Enough to Support an Absolute Calibration. Journal of Motor Behavior, 2019, 51, 10-18.	0.9	3
20	Alternating Between Stimulus-Driven and Minimally-Delayed Prosaccades: Switch-Costs Manifest via Response Suppression. Journal of Vision, 2019, 19, 83c.	0.3	1
21	Visuomotor mental rotation of a saccade: The contingent negative variation scales to the angle of rotation. Vision Research, 2018, 143, 82-88.	1.4	4
22	Results From a Feasibility Study of Square-Stepping Exercise in Older Adults With Type 2 Diabetes and Self-Reported Cognitive Complaints to Improve Global Cognitive Functioning. Canadian Journal of Diabetes, 2018, 42, 603-612.e1.	0.8	20
23	Goal-directed reaching: the allocentric coding of target location renders an offline mode of control. Experimental Brain Research, 2018, 236, 1149-1159.	1.5	0
24	Executive-related oculomotor control is improved following a 10-min single-bout of aerobic exercise: Evidence from the antisaccade task. Neuropsychologia, 2018, 108, 73-81.	1.6	28
25	Hand anthropometry and the limits of aperture separation determine the utility of Weber's law in grasping and manual estimation. Experimental Brain Research, 2018, 236, 2439-2446.	1.5	8
26	A post-exercise facilitation of executive function is independent of aerobically supported metabolic costs. Neuropsychologia, 2018, 120, 65-74.	1.6	16
27	Oculomotor Executive Dysfunction during the Early and Later Stages of Sport-Related Concussion Recovery. Journal of Neurotrauma, 2018, 35, 1874-1881.	3.4	22
28	Long-Term Maintenance of Executive-Related Oculomotor Improvements in Older Adults with Self-Reported Cognitive Complaints Following a 24-Week Multiple Modality Exercise Program. Journal of Alzheimer's Disease, 2017, 58, 17-22.	2.6	5
29	Fitts' Theorem and Movement Time Dissociation for Amplitude and Width Manipulations: Replying to Hoffmann. Journal of Motor Behavior, 2017, 49, 694-696.	0.9	1
30	The spatial relations between stimulus and response determine an absolute visuo-haptic calibration in pantomime-grasping. Brain and Cognition, 2017, 114, 29-39.	1.8	8
31	Biomechanical constraints do not influence pantomime-grasping adherence to Weber's law: A reply to Utz et al. (2015). Vision Research, 2017, 130, 31-35.	1.4	17
32	A 24-Week Multi-Modality Exercise Program Improves Executive Control inÂOlder Adults with a Self-Reported Cognitive Complaint: Evidence fromÂtheÂAntisaccade Task. Journal of Alzheimer's Disease, 2017, 56, 167-183.	2.6	24
33	Vision for action and perception elicit dissociable adherence to Weber's law across a range of â€~graspable' target objects. Experimental Brain Research, 2017, 235, 3003-3012.	1.5	13
34	Haptic feedback attenuates illusory bias in pantomime-grasping: evidence for a visuo-haptic calibration. Experimental Brain Research, 2017, 235, 1041-1051.	1.5	4
35	Manual estimations of functionally graspable target objects adhere to Weber's law. Experimental Brain Research, 2017, 235, 1701-1707.	1.5	10
36	Pantomime-Grasping: Advance Knowledge of Haptic Feedback Availability Supports an Absolute Visuo-Haptic Calibration. Frontiers in Human Neuroscience, 2016, 10, 197.	2.0	17

#	Article	IF	CITATIONS
37	A Six-Month Cognitive-Motor and Aerobic Exercise Program Improves Executive Function in Persons with an Objective Cognitive Impairment: A Pilot Investigation Using the Antisaccade Task. Journal of Alzheimer's Disease, 2016, 54, 923-931.	2.6	20
38	The visual properties of proximal and remote distractors differentially influence reaching planning times: evidence from pro- and antipointing tasks. Experimental Brain Research, 2016, 234, 3259-3268.	1.5	1
39	Corrections in saccade endpoints scale to the amplitude of target displacements in a double-step paradigm. Neuroscience Letters, 2016, 611, 46-50.	2.1	5
40	Grasping a 2D object: terminal haptic feedback supports an absolute visuo-haptic calibration. Experimental Brain Research, 2016, 234, 945-954.	1.5	24
41	Fitts' Theorem in Oculomotor Control: Dissociable Movement Times for Amplitude and Width Manipulations. Journal of Motor Behavior, 2016, 48, 489-499.	0.9	9
42	Alternating between pro- and antisaccades: switch-costs manifest via decoupling the spatial relations between stimulus and response. Experimental Brain Research, 2016, 234, 853-865.	1.5	11
43	Event-related brain potentials during the visuomotor mental rotation task: The contingent negative variation scales to angle of rotation. Neuroscience, 2015, 311, 153-165.	2.3	12
44	The antisaccade task: Vector inversion contributes to a statistical summary representation of target eccentricities. Journal of Vision, 2015, 15, 4.	0.3	10
45	An Inverse Grip Starting Posture Gives Rise to Time-Dependent Adherence to Weber's Law: A Reply to Ganel et al. (2014). Journal of Vision, 2015, 15, 1.	0.3	13
46	Augmented feedback influences upper limb reaching movement times but does not explain violations of Fitts' Law. Frontiers in Psychology, 2015, 6, 800.	2.1	15
47	Memory delay and haptic feedback influence the dissociation of tactile cues for perception and action. Neuropsychologia, 2015, 71, 91-100.	1.6	18
48	Pantomime-grasping: the â€~return' of haptic feedback supports the absolute specification of object size. Experimental Brain Research, 2015, 233, 2029-2040.	1.5	18
49	Task-Switching Effects for Visual and Auditory Pro- and Antisaccades: Evidence for a Task-Set Inertia. Journal of Motor Behavior, 2015, 47, 319-327.	0.9	4
50	The unidirectional prosaccade switch-cost: Electroencephalographic evidence of task-set inertia in oculomotor control. Behavioural Brain Research, 2015, 278, 323-329.	2.2	22
51	The Antisaccade Task: Visual Distractors Elicit a Location-Independent Planning â€~Cost'. PLoS ONE, 2015, 10, e0122345.	2.5	13
52	Response Suppression Delays the Planning of Subsequent Stimulus-Driven Saccades. PLoS ONE, 2014, 9, e86408.	2.5	12
53	Oculomotor task switching: alternating from a nonstandard to a standard response yields the unidirectional prosaccade switch-cost. Journal of Neurophysiology, 2014, 112, 2176-2184.	1.8	35
54	Repetitive antisaccade execution does not increase the unidirectional prosaccade switch-cost. Acta Psychologica, 2014, 146, 67-72.	1.5	16

#	Article	IF	CITATIONS
55	Weber's law in tactile grasping and manual estimation: Feedback-dependent evidence for functionally distinct processing streams. Brain and Cognition, 2014, 86, 32-41.	1.8	22
56	Target frequency influences antisaccade endpoint bias: Evidence for perceptual averaging. Vision Research, 2014, 105, 151-158.	1.4	17
57	Perceptual averaging governs antisaccade endpoint bias. Experimental Brain Research, 2014, 232, 3201-3210.	1.5	29
58	The unidirectional prosaccade switch-cost: Correct and error antisaccades differentially influence the planning times for subsequent prosaccades. Vision Research, 2014, 96, 17-24.	1.4	38
59	Stimulus-driven saccades are characterized by an invariant undershooting bias: no evidence for a range effect. Experimental Brain Research, 2013, 230, 165-174.	1.5	24
60	Goal-directed grasping: The dimensional properties of an object influence the nature of the visual information mediating aperture shaping. Brain and Cognition, 2013, 82, 18-24.	1.8	52
61	Distinct Visual Cues Mediate Aperture Shaping for Grasping and Pantomime-Grasping Tasks. Journal of Motor Behavior, 2013, 45, 431-439.	0.9	30
62	Reduced Cortical Motor Potentials Underlie Reductions in Memory-Guided Reaching Performance. Motor Control, 2012, 16, 353-370.	0.6	8
63	Task-switching in oculomotor control: Unidirectional switch-cost when alternating between pro- and antisaccades. Neuroscience Letters, 2012, 530, 150-154.	2.1	36
64	Electroencephalographic evidence of vector inversion in antipointing. Experimental Brain Research, 2012, 221, 19-26.	1.5	14
65	Grasping time does not influence the early adherence of aperture shaping to Weber's law. Frontiers in Human Neuroscience, 2012, 6, 332.	2.0	31
66	The prior-antisaccade effect influences the planning and online control of prosaccades. Experimental Brain Research, 2012, 216, 545-552.	1.5	20
67	The Visuomotor Mental Rotation Task: Visuomotor Transformation Times Are Reduced for Small and Perceptually Familiar Angles. Journal of Motor Behavior, 2011, 43, 393-402.	0.9	8
68	Pro- and Antisaccades: Dissociating Stimulus and Response Influences the Online Control of Saccade Trajectories. Journal of Motor Behavior, 2011, 43, 375-381.	0.9	8
69	The visual coding of grip aperture shows an early but not late adherence to Weber's law. Neuroscience Letters, 2011, 490, 200-204.	2.1	43
70	Visually and memory-guided grasping: Aperture shaping exhibits a time-dependent scaling to Weber's law. Vision Research, 2011, 51, 1941-1948.	1.4	37
71	Vector inversion diminishes the online control of antisaccades. Experimental Brain Research, 2011, 209, 117-127.	1.5	23
72	Revisiting Fitts and Peterson (1964): Width and amplitude manipulations to the reaching environment elicit dissociable movement times Canadian Journal of Experimental Psychology, 2011, 65, 259-268.	0.8	18

#	Article	IF	CITATIONS
73	Visuomotor mental rotation: the reaction time advantage for anti-pointing is not influenced by perceptual experience with the cardinal axes. Experimental Brain Research, 2010, 201, 593-598.	1.5	9
74	Antipointing: perception-based visual information renders an offline mode of control. Experimental Brain Research, 2010, 202, 55-64.	1.5	22
75	Antisaccades exhibit diminished online control relative to prosaccades. Experimental Brain Research, 2010, 203, 743-752.	1.5	19
76	Visuomotor mental rotation: Reaction time is determined by the complexity of the sensorimotor transformations mediating the response. Brain Research, 2010, 1366, 129-140.	2.2	21
77	Anti-pointing is mediated by a perceptual bias of target location in left and right visual space. Experimental Brain Research, 2009, 192, 275-286.	1.5	27
78	The Antipointing Task: Vector Inversion Is Supported by a Perceptual Estimate of Visual Space. Journal of Motor Behavior, 2009, 41, 383-392.	0.9	18
79	Visuomotor mental rotation: Reaction time is not a function of the angle of rotation. Neuroscience Letters, 2009, 463, 194-198.	2.1	13
80	Goal-directed reaching: movement strategies influence the weighting of allocentric and egocentric visual cues. Experimental Brain Research, 2008, 186, 375-384.	1.5	41
81	Visuomotor memory is independent of conscious awareness of target features. Experimental Brain Research, 2008, 188, 517-527.	1.5	50
82	Egocentric and Allocentric Visual Cues Influence the Specification of Movement Distance and Direction. Journal of Motor Behavior, 2008, 40, 203-213.	0.9	11
83	Response Modes Influence the Accuracy of Monocular and Binocular Reaching Movements. Motor Control, 2008, 12, 252-266.	0.6	11
84	Action Without Awareness: Reaching to an Object You Do Not Remember Seeing. PLoS ONE, 2008, 3, e3539.	2.5	11
85	Visuomotor system uses target features unavailable to conscious awareness. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 12669-12672.	7.1	52
86	The proximity of visual landmarks impacts reaching performance. Spatial Vision, 2007, 20, 317-336.	1.4	54
87	Visuomotor Memory for Target Location in Near and Far Reaching Spaces. Journal of Motor Behavior, 2007, 39, 169-177.	0.9	33
88	Interhemispheric transmission time in persons with Down syndrome. Journal of Intellectual Disability Research, 2007, 51, 972-981.	2.0	25
89	Allocentric visual cues influence online limb adjustments. Motor Control, 2007, 11, 54-70.	0.6	6
90	Visual feedback schedules influence visuomotor resistance to the Müller-Lyer figures. Experimental Brain Research, 2006, 168, 348-356.	1.5	32

#	Article	IF	CITATIONS
91	Müller-Lyer figures influence the online reorganization of visually guided grasping movements. Experimental Brain Research, 2006, 169, 473-481.	1.5	20
92	A lower visual field advantage for endpoint stability but no advantage for online movement precision. Experimental Brain Research, 2006, 170, 127-135.	1.5	31
93	Role of Limb and Target Vision in the Online Control of Memory-Guided Reaches. Motor Control, 2005, 9, 281-309.	0.6	101
94	Time Course Analysis of Closed- and Open-Loop Grasping of the Müller-Lyer Illusion. Journal of Motor Behavior, 2005, 37, 179-185.	0.9	41
95	Relative Processing Demands Influence Cerebral Laterality for Verbal-Motor Integration in Persons with Down Syndrome. Cortex, 2005, 41, 61-66.	2.4	10
96	Role of the visuomotor system in on-line attenuation of a premovement illusory bias in grip aperture. Brain and Cognition, 2005, 57, 111-114.	1.8	8
97	Manual asymmetries in bimanual reaching: The influence of spatial compatibility and visuospatial attention. Brain and Cognition, 2005, 57, 102-105.	1.8	22
98	Action control: Independent effects of memory and monocular viewing on reaching accuracy. Brain and Cognition, 2005, 57, 257-260.	1.8	8
99	Can the motor system utilize a stored representation to control movement?. Behavioral and Brain Sciences, 2004, 27, .	0.7	15
100	Background visual cues and memory-guided reaching. Human Movement Science, 2004, 23, 861-877.	1.4	85
101	Can the motor system resolve a premovement bias in grip aperture? Online analysis of grasping the M�ller-Lyer illusion. Experimental Brain Research, 2004, 158, 378-84.	1.5	41
102	The Control of Memory-Guided Reaching Movements in Peripersonal Space. Motor Control, 2004, 8, 76-106.	0.6	116
103	No Evidence for Accurate Visuomotor Memory: Systematic and Variable Error in Memory-Guided Reaching. Journal of Motor Behavior, 2003, 35, 127-133.	0.9	79
104	Can a Visual Representation Support the Online Control of Memory-Dependent Reaching? Evidence from a Variable Spatial Mapping Paradigm. Motor Control, 2003, 7, 349-365.	0.6	36
105	Can a visual representation support the online control of memory-dependent reaching? Evident from a variable spatial mapping paradigm. Motor Control, 2003, 7, 346-61.	0.6	13
106	Manual asymmetries in tool-use: Implications for apraxia. Laterality, 2002, 7, 131-143.	1.0	13
107	The accuracy of reaching movements in brief delay conditions Canadian Journal of Experimental Psychology, 2001, 55, 304-310.	0.8	52
108	The effect of a pictorial illusion on closed-loop and open-loop prehension. Experimental Brain Research, 2000, 134, 456-463.	1.5	118

#	Article	IF	CITATIONS
109	Goal-Directed Aiming: Correcting a Force-Specification Error With the Right and Left Hands. Journal of Motor Behavior, 1999, 31, 309-324.	0.9	93
110	The control of goal-directed limb movements: Correcting errors in the trajectory. Human Movement Science, 1999, 18, 121-136.	1.4	162
111	On-line control of rapid aiming movements: Unexpected target perturbations and movement kinematics Canadian Journal of Experimental Psychology, 1998, 52, 163-173.	0.8	104
112	The unidirectional prosaccade switch-cost: no evidence for the passive dissipation of an oculomotor task-set inertia. Experimental Brain Research, 0, , .	1.5	0