
Xiaonan Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2286710/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Energy Demand Side Management within micro-grid networks enhanced by blockchain. Applied Energy, 2018, 228, 1385-1398.	5.1	308
2	Operational optimization and demand response of hybrid renewable energy systems. Applied Energy, 2015, 143, 324-335.	5.1	230
3	Machine learning prediction of biochar yield and carbon contents in biochar based on biomass characteristics and pyrolysis conditions. Bioresource Technology, 2019, 288, 121527.	4.8	202
4	Sustainable planning of the energy-water-food nexus using decision making tools. Energy Policy, 2018, 113, 584-607.	4.2	182
5	The application of machine learning methods for prediction of metal sorption onto biochars. Journal of Hazardous Materials, 2019, 378, 120727.	6.5	177
6	Design and management of a distributed hybrid energy system through smart contract and blockchain. Applied Energy, 2019, 248, 390-405.	5.1	177
7	Fuel properties of hydrochar and pyrochar: Prediction and exploration with machine learning. Applied Energy, 2020, 269, 115166.	5.1	141
8	Review and outlook on the international renewable energy development. Energy and Built Environment, 2022, 3, 139-157.	2.9	139
9	Prediction of Soil Heavy Metal Immobilization by Biochar Using Machine Learning. Environmental Science & Technology, 2022, 56, 4187-4198.	4.6	138
10	Applied Machine Learning for Prediction of CO ₂ Adsorption on Biomass Waste-Derived Porous Carbons. Environmental Science & Technology, 2021, 55, 11925-11936.	4.6	132
11	Organic waste to biohydrogen: A critical review from technological development and environmental impact analysis perspective. Applied Energy, 2019, 256, 113961.	5.1	111
12	The impact of intelligent cyber-physical systems on the decarbonization of energy. Energy and Environmental Science, 2020, 13, 744-771.	15.6	104
13	Recurrent Neural Network-Based Model Predictive Control for Continuous Pharmaceutical Manufacturing. Mathematics, 2018, 6, 242.	1.1	103
14	Multi-task prediction and optimization of hydrochar properties from high-moisture municipal solid waste: Application of machine learning on waste-to-resource. Journal of Cleaner Production, 2021, 278, 123928.	4.6	98
15	Toward the Shell Biorefinery: Processing Crustacean Shell Waste Using Hot Water and Carbonic Acid. ACS Sustainable Chemistry and Engineering, 2019, 7, 5532-5542.	3.2	96
16	The COVID-19 pandemic necessitates a shift to a plastic circular economy. Nature Reviews Earth & Environment, 2021, 2, 659-660.	12.2	92
17	AI Applications through the Whole Life Cycle of Material Discovery. Matter, 2020, 3, 393-432.	5.0	86
18	Two-step machine learning enables optimized nanoparticle synthesis. Npj Computational Materials, 2021, 7, .	3.5	86

2

#	Article	IF	CITATIONS
19	Exergoeconomic analysis of a novel trigeneration system containing supercritical CO2 Brayton cycle, organic Rankine cycle and absorption refrigeration cycle for gas turbine waste heat recovery. Energy Conversion and Management, 2020, 221, 113064.	4.4	79
20	Online prediction of mechanical properties of hot rolled steel plate using machine learning. Materials and Design, 2021, 197, 109201.	3.3	78
21	Multi-objective optimization of a neighborhood-level urban energy network: Considering Game-theory inspired multi-benefit allocation constraints. Applied Energy, 2018, 231, 534-548.	5.1	76
22	Machine learning aided supercritical water gasification for H2-rich syngas production with process optimization and catalyst screening. Chemical Engineering Journal, 2021, 426, 131285.	6.6	72
23	Understanding and optimization of thin film nanocomposite membranes for reverse osmosis with machine learning. Journal of Membrane Science, 2020, 606, 118135.	4.1	71
24	Optimal scheduling of demand responsive industrial production with hybrid renewable energy systems. Renewable Energy, 2017, 100, 53-64.	4.3	69
25	Life cycle assessment of food waste to energy and resources: Centralized and decentralized anaerobic digestion with different downstream biogas utilization. Renewable and Sustainable Energy Reviews, 2021, 150, 111489.	8.2	68
26	An economic receding horizon optimization approach for energy management in the chlor-alkali process with hybrid renewable energy generation. Journal of Process Control, 2014, 24, 1318-1327.	1.7	63
27	A quantitative roadmap for China towards carbon neutrality in 2060 using methanol and ammonia as energy carriers. IScience, 2021, 24, 102513.	1.9	62
28	Pyrolysis of waste surgical masks into liquid fuel and its life-cycle assessment. Bioresource Technology, 2022, 346, 126582.	4.8	62
29	Optimal design of negative emission hybrid renewable energy systems with biochar production. Applied Energy, 2019, 243, 233-249.	5.1	60
30	Blockchain-based smart contract for energy demand management. Energy Procedia, 2019, 158, 2719-2724.	1.8	59
31	A multi-objective optimization approach for selection of energy storage systems. Computers and Chemical Engineering, 2018, 115, 213-225.	2.0	58
32	Distributed or centralized? Designing district-level urban energy systems by a hierarchical approach considering demand uncertainties. Applied Energy, 2019, 252, 113424.	5.1	58
33	A Nexus Approach for Sustainable Urban Energy-Water-Waste Systems Planning and Operation. Environmental Science & Technology, 2018, 52, 3257-3266.	4.6	55
34	Techno-economic-environmental evaluation of a combined cooling heating and power system for gas turbine waste heat recovery. Energy, 2021, 231, 120956.	4.5	51
35	Long-term economic planning of combined cooling heating and power systems considering energy storage and demand response. Applied Energy, 2020, 279, 115819.	5.1	50
36	Deep Learning Accelerated Gold Nanocluster Synthesis. Advanced Intelligent Systems, 2019, 1, 1900029.	3.3	49

#	Article	IF	CITATIONS
37	Hydrogen value chain and fuel cells within hybrid renewable energy systems: Advanced operation and control strategies. Applied Energy, 2019, 233-234, 321-337.	5.1	49
38	A decision support framework for the design and operation of sustainable urban farming systems. Journal of Cleaner Production, 2020, 268, 121928.	4.6	46
39	Effects of activated carbon on mesophilic and thermophilic anaerobic digestion of food waste: Process performance and life cycle assessment. Chemical Engineering Journal, 2020, 399, 125757.	6.6	44
40	Combining agent-based residential demand modeling with design optimization for integrated energy systems planning and operation. Applied Energy, 2020, 263, 114623.	5.1	44
41	Wet wastes to bioenergy and biochar: A critical review with future perspectives. Science of the Total Environment, 2022, 817, 152921.	3.9	44
42	A Compact Convolutional Neural Network for Surface Defect Inspection. Sensors, 2020, 20, 1974.	2.1	42
43	Data-Driven Based In-Depth Interpretation and Inverse Design of Anaerobic Digestion for CH ₄ -Rich Biogas Production. ACS ES&T Engineering, 2022, 2, 642-652.	3.7	41
44	Improving protein solubility and activity by introducing small peptide tags designed with machine learning models. Metabolic Engineering Communications, 2020, 11, e00138.	1.9	39
45	A three-step machine learning framework for energy profiling, activity state prediction and production estimation in smart process manufacturing. Applied Energy, 2021, 291, 116808.	5.1	39
46	A hybrid data-driven and mechanistic modelling approach for hydrothermal gasification. Applied Energy, 2021, 304, 117674.	5.1	39
47	Machine learning aided bio-oil production with high energy recovery and low nitrogen content from hydrothermal liquefaction of biomass with experiment verification. Chemical Engineering Journal, 2021, 425, 130649.	6.6	38
48	Analysis of biomass polygeneration integrated energy system based on a mixed-integer nonlinear programming optimization method. Journal of Cleaner Production, 2020, 271, 122761.	4.6	37
49	Game theory-based renewable multi-energy system design and subsidy strategy optimization. Advances in Applied Energy, 2021, 2, 100024.	6.6	37
50	Automatic strain sensor design via active learning and data augmentation for soft machines. Nature Machine Intelligence, 2022, 4, 84-94.	8.3	37
51	Application of Life Cycle Assessment and Machine Learning for High-Throughput Screening of Green Chemical Substitutes. ACS Sustainable Chemistry and Engineering, 2020, 8, 11141-11151.	3.2	35
52	ProGAN: Protein solubility generative adversarial nets for data augmentation in DNN framework. Computers and Chemical Engineering, 2019, 131, 106533.	2.0	34
53	Techno-enviro-economic analyses of hydrogen supply chains with an ASEAN case study. International Journal of Hydrogen Energy, 2021, 46, 32914-32928.	3.8	34
54	Develop machine learning-based regression predictive models for engineering protein solubility. Bioinformatics, 2019, 35, 4640-4646.	1.8	32

#	Article	IF	CITATIONS
55	Township-based bioenergy systems for distributed energy supply and efficient household waste re-utilisation: Techno-economic and environmental feasibility. Energy, 2019, 181, 455-467.	4.5	31
56	Machine Learning Modeling and Predictive Control of the Batch Crystallization Process. Industrial & Engineering Chemistry Research, 2022, 61, 5578-5592.	1.8	31
57	Machine Vision Automated Chiral Molecule Detection and Classification in Molecular Imaging. Journal of the American Chemical Society, 2021, 143, 10177-10188.	6.6	30
58	Cyber–Physical Production Systems for Data-Driven, Decentralized, and Secure Manufacturing—A Perspective. Engineering, 2021, 7, 1212-1223.	3.2	30
59	Planning urban energy systems adapting to extreme weather. Advances in Applied Energy, 2021, 3, 100053.	6.6	30
60	Combined multi-objective optimization and agent-based modeling for a 100% renewable island energy system considering power-to-gas technology and extreme weather conditions. Applied Energy, 2022, 308, 118376.	5.1	30
61	Recent advancements in sustainable upcycling of solid waste into porous carbons for carbon dioxide capture. Renewable and Sustainable Energy Reviews, 2022, 162, 112413.	8.2	30
62	Energy-water nexus design and operation towards the sustainable development goals. Computers and Chemical Engineering, 2019, 124, 162-171.	2.0	29
63	Smart Manufacturing for Smart Cities—Overview, Insights, and Future Directions. Advanced Intelligent Systems, 2020, 2, 2000043.	3.3	29
64	Design and prediction of metal organic framework-based mixed matrix membranes for CO2 capture via machine learning. Cell Reports Physical Science, 2022, 3, 100864.	2.8	29
65	An integrated optimisation platform for sustainable resource and infrastructure planning. Environmental Modelling and Software, 2018, 101, 146-168.	1.9	26
66	Multigenerational Crumpling of 2D Materials for Anticounterfeiting Patterns with Deep Learning Authentication. Matter, 2020, 3, 2160-2180.	5.0	26
67	Understanding and optimizing the gasification of biomass waste with machine learning. Green Chemical Engineering, 2023, 4, 123-133.	3.3	26
68	Optimization and control of offshore wind systems with energy storage. Energy Conversion and Management, 2018, 173, 426-437.	4.4	25
69	Meta-analysis of the strategies for self-healing and resilience in power systems. Advances in Applied Energy, 2021, 4, 100036.	6.6	23
70	Design and operation of hybrid renewable energy systems: current status and future perspectives. Current Opinion in Chemical Engineering, 2021, 31, 100669.	3.8	22
71	Online learningâ€based predictive control of crystallization processes under batchâ€ŧoâ€batch parametric drift. AICHE Journal, 2022, 68, .	1.8	22
72	A review of computational modeling techniques for wet waste valorization: Research trends and future perspectives. Journal of Cleaner Production, 2022, 367, 133025.	4.6	21

#	Article	IF	CITATIONS
73	Biocatalytic Continuous Manufacturing of Diabetes Drug: Plantwide Process Modeling, Optimization, and Environmental and Economic Analysis. ACS Sustainable Chemistry and Engineering, 2019, 7, 1038-1051.	3.2	20
74	Optimal allocation of energy storage and solar photovoltaic systems with residential demand scheduling. Applied Energy, 2020, 269, 115116.	5.1	20
75	Household waste management in Singapore and Shanghai: Experiences, challenges and opportunities from the perspective of emerging megacities. Waste Management, 2022, 144, 221-232.	3.7	20
76	Planning of Food-Energy-Water-Waste (FEW2) nexus for sustainable development. BMC Chemical Engineering, 2020, 2, .	3.4	19
77	Preference Ranking on the Basis of Ideal-Average Distance Method for Multi-Criteria Decision-Making. Industrial & Engineering Chemistry Research, 2021, 60, 11216-11230.	1.8	18
78	Self-Improving Photosensitizer Discovery System via Bayesian Search with First-Principle Simulations. Journal of the American Chemical Society, 2021, 143, 19769-19777.	6.6	17
79	Machineâ€Learningâ€Assisted Accurate Prediction of Molecular Optical Properties upon Aggregation. Advanced Science, 2022, 9, e2101074.	5.6	17
80	Waste-to-hydrogen: Recycling HCl to produce H2 and Cl2. Applied Energy, 2020, 259, 114184.	5.1	16
81	A load-complementarity combined flexible clustering approach for large-scale urban energy-water nexus optimization. Applied Energy, 2020, 270, 115163.	5.1	16
82	Alâ€enhanced soil management and smart farming. Soil Use and Management, 2022, 38, 7-13.	2.6	16
83	Operation of residential hybrid renewable energy systems: Integrating forecasting, optimization and demand response. , 2014, , .		15
84	Energy management for the chlor-alkali process with hybrid renewable energy generation using receding horizon optimization. , 2014, , .		14
85	Evaluation of potential feedstocks for sustainable biogas production in Ghana: Quantification, energy generation, and CO ₂ abatement. Cogent Environmental Science, 2020, 6, .	1.6	14
86	Simultaneous design and operation optimization of renewable combined cooling heating and power systems. AICHE Journal, 2020, 66, e17039.	1.8	13
87	Assessing the environmental performance of NADH regeneration methods: A cleaner process using recyclable Pt/Fe3O4 and hydrogen. Catalysis Today, 2020, 339, 281-288.	2.2	12
88	An integrated approach for machine-learning-based system identification of dynamical systems under control: application towards the model predictive control of a highly nonlinear reactor system. Frontiers of Chemical Science and Engineering, 2022, 16, 237-250.	2.3	12
89	Proactive Reconfiguration of Heat-Exchanger Supernetworks. Industrial & Engineering Chemistry Research, 2015, 54, 9178-9190.	1.8	11
90	Optimal Design of Standalone Hybrid Renewable Energy Systems with Biochar Production in Remote Rural Areas: A Case Study. Energy Procedia, 2019, 158, 688-693.	1.8	11

#	Article	IF	CITATIONS
91	Achieving a low-carbon future through the energy–chemical nexus in China. Sustainable Energy and Fuels, 2020, 4, 6141-6155.	2.5	11
92	A machine learning framework to quantify and assess the impact of COVID-19 on the power sector: An Indian context. Advances in Applied Energy, 2022, 5, 100078.	6.6	11
93	Precision healthcare supply chain design through multi-objective stochastic programming. Computer Aided Chemical Engineering, 2018, , 2137-2142.	0.3	10
94	Environmental and techno-economic analyses of bio-jet fuel produced from jatropha and castor oilseeds in China. International Journal of Life Cycle Assessment, 2021, 26, 1071-1084.	2.2	10
95	Relative optimization potential: A novel perspective to address trade-off challenges in urban energy system planning. Applied Energy, 2021, 304, 117741.	5.1	10
96	Learning-based scheduling of industrial hybrid renewable energy systems. Computers and Chemical Engineering, 2022, 159, 107665.	2.0	10
97	Energy Demand Side Management with supply constraints: Game theoretic Approach. Energy Procedia, 2018, 145, 368-373.	1.8	9
98	Thermodynamic analysis of operating strategies for waste heat recovery of combined heating and power systems. Energy, 2022, 258, 124803.	4.5	9
99	Water and Energy Systems in Sustainable City Development: A Case of Sub-saharan Africa. Procedia Engineering, 2017, 198, 948-957.	1.2	8
100	Optimization and control of offshore wind farms with energy storage systems. IFAC-PapersOnLine, 2018, 51, 862-867.	0.5	8
101	Comparative life cycle assessment of NAD(P)H regeneration technologies. Green Chemistry, 2021, 23, 7162-7169.	4.6	8
102	Online-learning-aided optimization and interpretation of sugar production from oil palm mesocarp fibers with analytics for industrial applications. Resources, Conservation and Recycling, 2022, 180, 106206.	5.3	8
103	A robust low data solution: Dimension prediction of semiconductor nanorods. Computers and Chemical Engineering, 2021, 150, 107315.	2.0	7
104	The World Avatar—A World Model for Facilitating Interoperability. Lecture Notes in Energy, 2022, , 39-53.	0.2	7
105	Optimal design of low-carbon energy systems towards sustainable cities under climate change scenarios. Journal of Cleaner Production, 2022, 366, 132933.	4.6	7
106	Increasing metabolic pathway flux by using machine learning models. Current Opinion in Biotechnology, 2020, 66, 179-185.	3.3	6
107	Hydrogen Economy Assessment & Resource Tool (HEART): A python-based tool for ASEAN H2 roadmap study. International Journal of Hydrogen Energy, 2022, 47, 21897-21907.	3.8	6
108	Waste-Energy-Water systems in sustainable city development using the resilience.io platform. Computer Aided Chemical Engineering, 2017, , 2377-2382.	0.3	5

#	Article	IF	CITATIONS
109	High-Purity V ₂ O ₅ Nanosheets Synthesized from Gasification Waste: Flexible Energy Storage Devices and Environmental Assessment. ACS Sustainable Chemistry and Engineering, 0, ,	3.2	5
110	Framework for WASH Sector Data Improvements in Data-Poor Environments, Applied to Accra, Ghana. Water (Switzerland), 2018, 10, 1278.	1.2	4
111	Sustainability assessment: focusing on different technologies recovering energy from waste. , 2020, , 235-264.		4
112	Embedding Energy Storage Systems into a Dynamic Knowledge Graph. Industrial & Engineering Chemistry Research, 2022, 61, 8390-8398.	1.8	4
113	Local control of fuel cell systems within hybrid renewable energy generation using model predictive control. Energy Procedia, 2018, 145, 333-338.	1.8	3
114	A Data-Driven Approach for Design and Optimization of Energy Storage Systems. Computer Aided Chemical Engineering, 2018, 44, 1759-1764.	0.3	3
115	On the Carbon Abatement Potential and Economic Viability of Biochar Production Systems. , 2019, , 385-408.		3
116	A machine learning-based decision support framework for energy storage selection. Chemical Engineering Research and Design, 2022, 181, 412-422.	2.7	3
117	Mining Maximum Length Frequent Itemsets: A Summary of Results. , 2006, , .		2
118	Proactive Optimization and Control of Heat-Exchanger Super Networks. IFAC-PapersOnLine, 2015, 48, 592-597.	0.5	2
119	Energy Demand Response of Process Systems through Production Scheduling and Control. IFAC-PapersOnLine, 2015, 48, 385-390.	0.5	2
120	Model-based decision-support for waste-to-energy pathways in New South Wales, Australia. Computer Aided Chemical Engineering, 2019, , 1765-1770.	0.3	2
121	The research and development of waste-to-hydrogen technologies and systems. Applied Energy, 2020, 268, 115015.	5.1	2
122	Model predictive control of fuel cells system within hybrid renewable energy generation. IFAC-PapersOnLine, 2018, 51, 856-861.	0.5	1
123	Editorial: Special Issue on Selected Papers from CIS-RAM2019 — Cybernetics and Intelligent Systems (CIS) and Robotics, Automation and Mechatronics (RAM). Unmanned Systems, 2020, 08, 191-192.	2.7	1
124	Smart systems engineering contributing to an intelligent carbon-neutral future: opportunities, challenges, and prospects. Frontiers of Chemical Science and Engineering, 2022, 16, 1023-1029.	2.3	1
125	Special Issue on "Design and Control of Sustainable Processes― Processes, 2020, 8, 1046.	1.3	0