Pär G Jönsson

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2286613/publications.pdf Version: 2024-02-01

		201674	254184
227	3,534	27	43
papers	citations	h-index	g-index
222	222	222	1000
232	232	232	1900
all docs	docs citations	times ranked	citing authors

PÃO C LÃONSSON

#	Article	IF	CITATIONS
1	Driving investments in ore beneficiation and scrap upgrading to meet an increased demand from the direct reduction-EAF route. Mineral Economics, 2022, 35, 203-220.	2.8	7
2	Prediction of nitrogen behaviour in the AOD process by a time-dependent thermodynamic model. Ironmaking and Steelmaking, 2022, 49, 70-82.	2.1	4
3	Novel carbon-negative methane production via integrating anaerobic digestion and pyrolysis of organic fraction of municipal solid waste. Energy Conversion and Management, 2022, 252, 115042.	9.2	17
4	Investigation of the Initial Corrosion Destruction of a Metal Matrix around Different Non-Metallic Inclusions on Surfaces of Pipeline Steels. Materials, 2022, 15, 2530.	2.9	5
5	Renewable hydrogen production from the organic fraction of municipal solid waste through a novel carbon-negative process concept. Energy, 2022, 252, 124056.	8.8	15
6	Effect of Batch Dissimilarity on Permeability of Stacked Ceramic Foam Filters and Incompressible Fluid Flow: Experimental and Numerical Investigation. Metals, 2022, 12, 1001.	2.3	2
7	Pyrolysis of engineered beach-cast seaweed: Performances and life cycle assessment. Water Research, 2022, 222, 118875.	11.3	9
8	The effects of oil/MWCNT nanofluids and geometries on theÂsolid oxide fuel cell cooling systems: a CFD study. Journal of Thermal Analysis and Calorimetry, 2021, 144, 245-256.	3.6	6
9	Study of dynamic refractory wear by slags containing very high FeO contents under steelmaking conditions. Ironmaking and Steelmaking, 2021, 48, 607-618.	2.1	5
10	Effect of Froude Number on Submerged Gas Blowing Characteristics. Materials, 2021, 14, 627.	2.9	3
11	Interfacial Reactions and Inclusion Formations at an Early Stage of FeNb Alloy Additions to Molten Iron. ISIJ International, 2021, 61, 209-218.	1.4	6
12	Experimental and Numerical Study of the Free Surface During the Side Teeming Ingot Casting Process. Steel Research International, 2021, 92, 2000660.	1.8	1
13	Impact of Solidification on Inclusion Morphology in ESR and PESR Remelted Martensitic Stainless Steel Ingots. Metals, 2021, 11, 408.	2.3	2
14	Evaluation of Sulfide Inclusions before and after Deformation of Steel by Using the Electrolytic Extraction Method. Metals, 2021, 11, 543.	2.3	3
15	Application of Some Modern Analytical Techniques for Characterization of Non-Metallic Inclusions in a Fe-10mass%Ni Alloy Deoxidized by Ti/Zr and Ti/Mg. Metals, 2021, 11, 448.	2.3	1
16	Study of the Hydration Behavior of Synthetic Ferropericlase with Low Iron Oxide Concentrations to Prevent Swelling in Steel Slags. Journal of Sustainable Metallurgy, 2021, 7, 547-558.	2.3	1
17	Effect of Thermal Buoyancy on Fluid Flow and Residence-Time Distribution in a Single-Strand Tundish. Materials, 2021, 14, 1906.	2.9	19
18	Modelling of Strengthening Mechanisms in Wrought Nickel-Based 825 Alloy Subjected to Solution Annealing. Metals, 2021, 11, 771.	2.3	1

#	Article	IF	CITATIONS
19	Model Development to Study Uncertainties in Electric Arc Furnace Plants to Improve Their Economic and Environmental Performance. Metals, 2021, 11, 892.	2.3	0
20	Magnetic bio-activated carbons production using different process parameters for phosphorus removal from artificially prepared phosphorus-rich and domestic wastewater. Chemosphere, 2021, 271, 129561.	8.2	16
21	Neutralization of Acidic Wastewater from a Steel Plant by Using CaO-Containing Waste Materials from Pulp and Paper Industries. Materials, 2021, 14, 2653.	2.9	6
22	Numerical Study on the Influence of the Filling Angle on the Fluid Flow during the Ingot Side Teeming Process. Steel Research International, 2021, 92, 2100102.	1.8	1
23	Synergistic effects in the copyrolysis of municipal sewage sludge digestate and salix: Reaction mechanism, product characterization and char stability. Applied Energy, 2021, 289, 116687.	10.1	28
24	Analysis of a model for longitudinal electromagnetic stirring in the continuous casting of steel. International Journal of Applied Electromagnetics and Mechanics, 2021, 66, 35-61.	0.6	1
25	Interfacial Phenomena and Inclusion Formation Behavior at Early Melting Stages of HCFeCr and LCFeCr Alloys in Liquid Iron. Metallurgical and Materials Transactions B: Process Metallurgy and Materials Processing Science, 2021, 52, 2459-2473.	2.1	6
26	Can torrefaction be a suitable method of enhancing shredder fines recycling?. Waste Management, 2021, 128, 211-220.	7.4	4
27	Primary fragmentation behavior of refuse derived fuel pellets during rapid pyrolysis. Fuel Processing Technology, 2021, 216, 106796.	7.2	14
28	Hot Deformation Behaviour and Processing Map of Cast Alloy 825. Journal of Materials Engineering and Performance, 2021, 30, 7770-7782.	2.5	4
29	Utilization of Organic Mixed Biosludge from Pulp and Paper Industries and Green Waste as Carbon Sources in Blast Furnace Hot Metal Production. Sustainability, 2021, 13, 7706.	3.2	4
30	Pyrolysis of raw and anaerobically digested organic fractions of municipal solid waste: Kinetics, thermodynamics, and product characterization. Chemical Engineering Journal, 2021, 415, 129064.	12.7	32
31	Characterization of Nonmetallic Inclusions in Lowâ€Alloyed Steels Using Pulse Distribution Analysis Optical Emission Spectroscopy and Offline Investigation Methods. Steel Research International, 2021, 92, 2100223.	1.8	2
32	Non-metallic Inclusions in Different Ferroalloys and Their Effect on the Steel Quality: A Review. Metallurgical and Materials Transactions B: Process Metallurgy and Materials Processing Science, 2021, 52, 2892-2925.	2.1	32
33	A Study of Treatment of Industrial Acidic Wastewaters with Stainless Steel Slags Using Pilot Trials. Materials, 2021, 14, 4806.	2.9	3
34	Characterization of Nonmetallic Inclusions in Different Ferroalloys used in the Steelmaking Processes. Steel Research International, 2021, 92, 2100269.	1.8	1
35	Synergistic effect of the co-pyrolysis of cardboard and polyethylene: A kinetic and thermodynamic study. Energy, 2021, 229, 120693.	8.8	26
36	Evolution of the Non-metallic Inclusions Influenced by Slag-Metal Reactions in Ti-Containing Ferritic Stainless Steel. Metallurgical and Materials Transactions B: Process Metallurgy and Materials Processing Science, 2021, 52, 3986-4001.	2.1	3

#	Article	IF	CITATIONS
37	Effect of LCFeCr Alloy Additions on the Non-metallic Inclusion Characteristics in Ti-Containing Ferritic Stainless Steel. Metallurgical and Materials Transactions B: Process Metallurgy and Materials Processing Science, 2021, 52, 3815-3832.	2.1	9
38	Influence of Non-metallic Inclusions in 316L Stainless Steels on Machining Using Different Cutting Speeds. ISIJ International, 2021, 61, 2426-2434.	1.4	3
39	Three-dimensional Investigations of Non-metallic Inclusions in Stainless Steels before and after Machining. ISIJ International, 2021, 61, 2416-2425.	1.4	1
40	Effect of Trace Magnesium Additions on the Dynamic Recrystallization in Cast Alloy 825 after One-Hit Hot-Deformation. Metals, 2021, 11, 36.	2.3	1
41	Study of the Dissolution of Stainless-Steel Slag Minerals in Different Acid Environments to Promote Their Use for the Treatment of Acidic Wastewaters. Applied Sciences (Switzerland), 2021, 11, 12106.	2.5	2
42	Magnetic bio-activated carbon production from lignin via a streamlined process and its use in phosphate removal from aqueous solutions. Science of the Total Environment, 2020, 708, 135069.	8.0	42
43	Influence of Manufacturing Conditions on Inclusion Characteristics and Mechanical Properties of FeCrNiMnCo Alloy. Metals, 2020, 10, 1286.	2.3	18
44	Application of Fly Ash from Pulp and Paper Industries as Slag Formers in Electric Arc Furnace Stainless Steel Production. Steel Research International, 2020, 91, 2000050.	1.8	6
45	Interpretable Machine Learning—Tools to Interpret the Predictions of a Machine Learning Model Predicting the Electrical Energy Consumption of an Electric Arc Furnace. Steel Research International, 2020, 91, 2000053.	1.8	24
46	Catalytic Pyrolysis of Lignocellulosic Biomass: The Influence of the Catalyst Regeneration Sequence on the Composition of Upgraded Pyrolysis Oils over a H-ZSM-5/Al-MCM-41 Catalyst Mixture. ACS Omega, 2020, 5, 28992-29001.	3.5	12
47	Effect of H-ZSM-5 and Al-MCM-41 Proportions in Catalyst Mixtures on the Composition of Bio-Oil in Ex-Situ Catalytic Pyrolysis of Lignocellulose Biomass. Catalysts, 2020, 10, 868.	3.5	17
48	Fibers of Failure: Classifying Errors in Predictive Processes. Algorithms, 2020, 13, 150.	2.1	0
49	Effect of Inclusions on the Corrosion Properties of the Nickel-Based Alloys 718 and EP718. Metals, 2020, 10, 1177.	2.3	9
50	Modeling the Effect of Scrap on the Electrical Energy Consumption of an Electric Arc Furnace. Processes, 2020, 8, 1044.	2.8	7
51	Numerical Analysis of Slag Transfer in the IronArc Process. Metallurgical and Materials Transactions B: Process Metallurgy and Materials Processing Science, 2020, 51, 2171-2186.	2.1	1
52	Origin of the Inclusions in Production-Scale Electrodes, ESR Ingots, and PESR Ingots in a Martensitic Stainless Steel. Metals, 2020, 10, 1620.	2.3	10
53	Energy Consumption and Greenhouse Gas Emissions of Nickel Products. Energies, 2020, 13, 5664.	3.1	31
54	Reply to the Discussion on "A Review of Physical and Numerical Approaches for the Study of Gas Stirring in Ladle Metallurgy― Metallurgical and Materials Transactions B: Process Metallurgy and Materials Processing Science, 2020, 51, 1847-1850.	2.1	1

#	Article	IF	CITATIONS
55	Numerical Investigations on Bubble Behavior at a Steel–Slag Interface. Steel Research International, 2020, 91, 1900611.	1.8	7
56	Assessment of Chip Breakability during Turning of Stainless Steels Based on Weight Distributions of Chips. Metals, 2020, 10, 675.	2.3	2
57	Energy Consumption and Greenhouse Gas Emissions During Ferromolybdenum Production. Journal of Sustainable Metallurgy, 2020, 6, 103-112.	2.3	14
58	Methods to Determine Characteristics of AOD-Converter Decarburization-Slags. Metals, 2020, 10, 308.	2.3	2
59	Development of a Mass and Energy Balance Model and Its Application for HBI Charged EAFs. Metals, 2020, 10, 311.	2.3	3
60	Assessment of Mechanisms for Particle Migration in Semi-Solid High Pressure Die Cast Aluminium-Silicon Alloys. Journal of Manufacturing and Materials Processing, 2020, 4, 51.	2.2	5
61	Pyrolysis performance of peat moss: A simultaneous in-situ thermal analysis and bench-scale experimental study. Fuel, 2020, 277, 118173.	6.4	18
62	Comparison of Nonmetallic Inclusion Characteristics in Metal Samples Using 2D and 3D Methods. Steel Research International, 2020, 91, 1900669.	1.8	17
63	An Experimental and Numerical Study of the Free Surface in an Uphill Teeming Ingot Casting Process. Steel Research International, 2020, 91, 1900609.	1.8	4
64	Using Statistical Modeling to Predict the Electrical Energy Consumption of an Electric Arc Furnace Producing Stainless Steel. Metals, 2020, 10, 36.	2.3	17
65	Utilization of fly ash and waste lime from pulp and paper mills in the Argon Oxygen Decarburization process. Journal of Cleaner Production, 2020, 261, 121182.	9.3	11
66	A study of the static recrystallization behaviour of cast Alloy 825 after hot-compressions. Journal of Physics: Conference Series, 2019, 1270, 012023.	0.4	3
67	Assessment of a Simplified Correlation Between Wettability Measurement and Dispersion/Coagulation Potency of Oxide Particles in Ferrous Alloy Melt. Metallurgical and Materials Transactions B: Process Metallurgy and Materials Processing Science, 2019, 50, 2229-2237.	2.1	8
68	An investigation of the Temperature Distribution of a Thin Steel Strip during the Quenching Step of a Hardening Process. Metals, 2019, 9, 675.	2.3	3
69	An Investigation of Non-Metallic Inclusions in Different Ferroalloys using Electrolytic Extraction. Metals, 2019, 9, 687.	2.3	9
70	The Impact of the Gas Inlet Position, Flow Rate, and Strip Velocity on the Temperature Distribution of a Stainless-Steel Strips during the Hardening Process. Metals, 2019, 9, 928.	2.3	1
71	Predicting the Electrical Energy Consumption of Electric Arc Furnaces Using Statistical Modeling. Metals, 2019, 9, 959.	2.3	23
72	The Use of High-Alloyed EAF Slag for the Neutralization of On-Site Produced Acidic Wastewater: The First Step Towards a Zero-Waste Stainless-Steel Production Process. Applied Sciences (Switzerland), 2019, 9, 3974.	2.5	9

#	Article	IF	CITATIONS
73	Briquetting of Wastes from Pulp and Paper Industries by Using AOD Converter Slag as Binders for Application in Metallurgy. Materials, 2019, 12, 2888.	2.9	2
74	Numerical investigation of thermal performance augmentation of nanofluid flow in microchannel heat sinks by using of novel nozzle structure: sinusoidal cavities and rectangular ribs. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2019, 41, 1.	1.6	7
75	Mathematical Modelling of the Initial Mold Filling with Utilization of an Angled Runner. Metals, 2019, 9, 693.	2.3	5
76	Effect of swirling flow tundish submerged entry nozzle outlet design on multiphase flow and heat transfer in mould. Ironmaking and Steelmaking, 2019, 46, 911-920.	2.1	9
77	Modification of Non-Metallic Inclusions in Oil-Pipeline Steels by Ca-Treatment. Metals, 2019, 9, 391.	2.3	5
78	A Kinetic Model of Mass Transfer and Chemical Reactions at a Steel/Slag Interface under Effect of Interfacial Tensions. ISIJ International, 2019, 59, 737-748.	1.4	28
79	Mathematical Modeling of Postcombustion in an Electric Arc Furnace (EAF). Metals, 2019, 9, 547.	2.3	2
80	Comparison of Eulerâ€Euler Approach and Euler–Lagrange Approach to Model Gas Injection in a Ladle. Steel Research International, 2019, 90, 1800494.	1.8	16
81	Kinetic Study of an H-ZSM-5/Al–MCM-41 Catalyst Mixture and Its Application in Lignocellulose Biomass Pyrolysis. Energy & Fuels, 2019, 33, 5360-5367.	5.1	20
82	Modification of Non-Metallic Inclusions in Stainless Steel by Addition of CaSi. Metals, 2019, 9, 74.	2.3	11
83	Experimental Determinations of Mixing Times in the IronArc Pilot Plant Process. Metals, 2019, 9, 101.	2.3	0
84	Characterization of non-metallic inclusions in corrosion -resistance nickel - based EP718 and 718 alloys by using electrolytic extraction method. E3S Web of Conferences, 2019, 121, 04004.	0.5	5
85	Mathematical Modelling Study of Dynamic Composition Change of Steel and Mold Flux in Continuous Casting of Steel. ISIJ International, 2019, 59, 2024-2035.	1.4	10
86	Direct Reduction of Fe, Ni and Cr from Oxides of Waste Products Used in Briquettes for Slag Foaming in EAF. Materials, 2019, 12, 3434.	2.9	7
87	Physical and Numerical Modelling on the Mixing Condition in a 50 t Ladle. Metals, 2019, 9, 1136.	2.3	7
88	A Review of Physical and Numerical Approaches for the Study of Gas Stirring in Ladle Metallurgy. Metallurgical and Materials Transactions B: Process Metallurgy and Materials Processing Science, 2019, 50, 555-577.	2.1	65
89	Numerical study of an application of a divergent reverse TurboSwirl nozzle in the billet continuous casting process. Ironmaking and Steelmaking, 2019, 46, 148-158.	2.1	2
90	Key Lubrication Concepts to Understand the Role of Flow, Heat Transfer and Solidification for Modelling Defect Formation during Continuous Casting. ISIJ International, 2018, 58, 201-210.	1.4	22

#	Article	IF	CITATIONS
91	Physical Modeling Study on the Mixing in the New IronArc Process. Steel Research International, 2018, 89, 1700555.	1.8	5
92	A Study on the Nonmetallic Inclusion Motions in a Swirling Flow Submerged Entry Nozzle in a New Cylindrical Tundish Design. Metallurgical and Materials Transactions B: Process Metallurgy and Materials Processing Science, 2018, 49, 723-736.	2.1	15
93	A physical modelling study to determine the influence of slag on the fluid flow in the AOD converter process. Ironmaking and Steelmaking, 2018, 45, 944-950.	2.1	7
94	The role of process control on the steel cleanliness. Ironmaking and Steelmaking, 2018, 45, 114-124.	2.1	14
95	Use of physical modelling to study how to increase the production capacity by implementing a novel oblong AOD converter. Ironmaking and Steelmaking, 2018, 45, 335-341.	2.1	4
96	The Effect of a High Al Content on the Variation of the Total Oxygen Content in the Steel Melt during a Secondary Refining Process. Steel Research International, 2018, 89, 1700287.	1.8	18
97	Importance of the Penetration Depth and Mixing in the IRONARC Process. ISIJ International, 2018, 58, 1210-1217.	1.4	6
98	Effect of Immersion Depth of a Swirling Flow Tundish SEN on Multiphase Flow and Heat Transfer in Mold. Metals, 2018, 8, 910.	2.3	10
99	Using chip weight distribution as a method to define chip breakability during machining. Procedia Manufacturing, 2018, 25, 309-315.	1.9	2
100	Microstructure characterisation in alloy 825. Procedia Manufacturing, 2018, 15, 1626-1634.	1.9	4
101	A Kinetic Model on Oxygen Transfer at a Steel/Slag Interface under Effect of Interfacial Tension. ISIJ International, 2018, 58, 1979-1988.	1.4	17
102	Prediction of Influences of Co, Ni, and W Elements on Carbide Precipitation Behavior in Fe–C–V–Cr–Mo Based High Speed Steels. Steel Research International, 2018, 89, 1800172.	1.8	3
103	High-Temperature Confocal Laser Scanning Microscopy Studies of Ferrite Formation in Inclusion-Engineered Steels: A Review. Jom, 2018, 70, 2283-2295.	1.9	46
104	Effect of H ₂ as Pyrolytic Agent on the Product Distribution during Catalytic Fast Pyrolysis of Biomass Using Zeolites. Energy & Fuels, 2018, 32, 8530-8536.	5.1	21
105	Two-stage ex-situ catalytic pyrolysis of lignocellulose for the production of gasoline-range chemicals. Journal of Analytical and Applied Pyrolysis, 2018, 134, 454-464.	5.5	30
106	Numerical Study on the Influence of a Swirling Flow Tundish on Multiphase Flow and Heat Transfer in Mold. Metals, 2018, 8, 368.	2.3	12
107	Determination of pressure in the extradendritic liquid area during solidification. Journal of Thermal Analysis and Calorimetry, 2018, 132, 1661-1667.	3.6	2
108	Studies of the decarburisation phenomena during preheating of submerged entry nozzles (SEN) in continuous casting processes. Ironmaking and Steelmaking, 2017, 44, 108-116	2.1	8

#	Article	IF	CITATIONS
109	The Influence of Microstructure and Non-Metallic Inclusions on the Machinability of Clean Steels. Steel Research International, 2017, 88, 1600111.	1.8	13
110	Recent Aspects on the Effect of Inclusion Characteristics on the Intragranular Ferrite Formation in Low Alloy Steels: A Review. High Temperature Materials and Processes, 2017, 36, 309-325.	1.4	43
111	Transport and Deposition of Nonâ€Metallic Inclusions in Steel Flows―A Comparison of Different Model Predictions to Pilot Plant Experiment Data. Steel Research International, 2017, 88, 1700155.	1.8	2
112	Mechanism of a CaS Formation in an Al-Killed High-S Containing Steel during a Secondary Refining Process without a Ca-Treatment. Steel Research International, 2017, 88, 1700147.	1.8	15
113	Numerical and Physical Study on a Cylindrical Tundish Design to Produce a Swirling Flow in the SEN During Continuous Casting of Steel. Metallurgical and Materials Transactions B: Process Metallurgy and Materials Processing Science, 2017, 48, 2695-2706.	2.1	19
114	Non-Metallic Inclusion Behaviors in a New Tundish and SEN Design Using a Swirling Flow during Continuous Casting of Steel. Steel Research International, 2017, 88, 1600155.	1.8	18
115	Attraction Force Estimations of Al ₂ O ₃ Particle Agglomerations in the Melt. Steel Research International, 2017, 88, 1600090.	1.8	21
116	Experimental Validation and Numerical Analysis of the Swirling Flow in a Submerged Entry Nozzle and Mold by Using a Reverse TurboSwirl in a Billet Continuous Casting Process. Steel Research International, 2017, 88, 1600339.	1.8	7
117	Investigation of Dendrite Coarsening in Complex Shaped Lamellar Graphite Iron Castings. Metals, 2017, 7, 244.	2.3	2
118	Numerical Study on the Effect of Lambda Value (Oxygen/Fuel Ratio) on Temperature Distribution and Efficiency of a Flameless Oxyfuel Combustion System. Energies, 2017, 10, 338.	3.1	3
119	Application of a Swirling Flow Producer in a Conventional Tundish during Continuous Casting of Steel. ISIJ International, 2017, 57, 2175-2184.	1.4	12
120	Evaluation of Agglomeration Mechanisms of Non-metallic Inclusions and Cluster Characteristics Produced by Ti/Al Complex Deoxidation in Fe-10mass% Ni Alloy. ISIJ International, 2016, 56, 1204-1209.	1.4	24
121	An Experimental and Numerical Study of Swirling Flow Generated by TurboSwirl in an Uphill Teeming Ingot Casting Process. ISIJ International, 2016, 56, 1404-1412.	1.4	11
122	The Global Societal Steel Scrap Reserves and Amounts of Losses. Resources, 2016, 5, 27.	3.5	13
123	A Numerical Study about the Influence of a Bubble Wake Flow on the Removal of Inclusions. ISIJ International, 2016, 56, 1982-1988.	1.4	24
124	A Comparative CFD Study on Simulating Flameless Oxy-Fuel Combustion in a Pilot-Scale Furnace. Journal of Combustion, 2016, 2016, 1-11.	1.0	7
125	A Simulation Study of Particles Generated from Pellet Wear Contacts during a Laboratory Test. ISIJ International, 2016, 56, 1910-1919.	1.4	1
126	A New Tundish Design to Produce a Swirling Flow in the SEN During Continuous Casting of Steel. Steel Research International, 2016, 87, 1356-1365.	1.8	19

#	Article	IF	CITATIONS
127	Deposition of particles in liquid flows in horizontal straight channels. International Journal of Heat and Fluid Flow, 2016, 62, 166-173.	2.4	10
128	Application of pulse distribution analysis with optical emission spectroscopy (PDA/OES) method during production of duplex stainless steel. Ironmaking and Steelmaking, 2016, 43, 121-129.	2.1	5
129	Ferrite Formation Dynamics and Microstructure Due to Inclusion Engineering in Low-Alloy Steels by Ti2O3 and TiN Addition. Metallurgical and Materials Transactions B: Process Metallurgy and Materials Processing Science, 2016, 47, 2133-2147.	2.1	25
130	Combination of In Situ Microscopy and Calorimetry to Study Austenite Decomposition in Inclusion Engineered Steels. Steel Research International, 2016, 87, 10-14.	1.8	23
131	Effect of the Sliding Velocity on the Size and Amount of Airborne Wear Particles Generated from Dry Sliding Wheel–Rail Contacts. Tribology Letters, 2016, 63, 1.	2.6	20
132	Effect of Carbon Content on the Potency of the Intragranular Ferrite Formation. Steel Research International, 2016, 87, 311-319.	1.8	23
133	Inclusion and Microstructure Characteristics in Steels with TiN Additions. Steel Research International, 2016, 87, 339-348.	1.8	28
134	Effect of Nepheline Syenite on Iron Losses in Slags during Desulphurization of Hot Metal. Steel Research International, 2016, 87, 599-607.	1.8	4
135	The effect of NiO on the conductivity of BaZr _{0.5} Ce _{0.3} Y _{0.2} O _{3â^î^} based electrolytes. RSC Advances, 2016, 6, 62368-62377.	3.6	11
136	A Model Study of Inclusions Deposition, Macroscopic Transport, and Dynamic Removal at Steel–Slag Interface for Different Tundish Designs. Metallurgical and Materials Transactions B: Process Metallurgy and Materials Processing Science, 2016, 47, 1916-1932.	2.1	26
137	Effect of the Ti, Al Contents on the Inclusion Characteristics in Steels with TiO ₂ and TiN Particle Additions. Steel Research International, 2016, 87, 911-920.	1.8	17
138	Electrical conductivities of translucent BaZrxCe0.8-xY0.2O3-δ (x = 0.5, 0.6, 0.7) ceramics. Scripta Materialia, 2016, 115, 87-90.	5.2	3
139	Prediction of intragranular ferrite nucleation from TiO, TiN, and VN inclusions. Journal of Materials Science, 2016, 51, 2168-2180.	3.7	50
140	Transport properties of BaZr0.5Ce0.3Y0.2O3â^' proton conductor prepared by spark plasma sintering. Ceramics International, 2016, 42, 4393-4399.	4.8	14
141	Effect of TurboSwirl Structure on an Uphill Teeming Ingot Casting Process. Metallurgical and Materials Transactions B: Process Metallurgy and Materials Processing Science, 2015, 46, 2652-2665.	2.1	9
142	The Influence of Swirl Flow on the Flow Field, Temperature Field and Inclusion Behavior when Using a Half Type Electromagnetic Swirl Flow Generator in a Submerged Entry and Mold. Steel Research International, 2015, 86, 1312-1327.	1.8	16
143	Characterization of Metal Droplets in Slag after Desulfurization of Hot Metal. ISIJ International, 2015, 55, 570-577.	1.4	14
144	Wettability of TiN by Liquid Iron and Steel. ISIJ International, 2015, 55, 1642-1651.	1.4	20

#	Article	IF	CITATIONS
145	Wettability of Al ₂ 0 ₃ , MgO and Ti ₂ 0 ₃ by Liquid Iron and Steel. ISIJ International, 2015, 55, 1882-1890.	1.4	42
146	Evaluation of Inclusion Characteristics in Low-Alloyed Steels by Mainly Using PDA/OES Method. ISIJ International, 2015, 55, 2173-2181.	1.4	17
147	The effect of inclusion composition on tool wear in hard part turning using PCBN cutting tools. Wear, 2015, 334-335, 13-22.	3.1	29
148	Effect of Stirring Practice on Sulphur and Nitrogen Refining as well as Inclusion Removal in Ladle Treatment. Steel Research International, 2015, 86, 1498-1507.	1.8	1
149	Inclusion Behavior under a Swirl Flow in a Submerged Entry Nozzle and Mold. Steel Research International, 2015, 86, 341-360.	1.8	26
150	Effect of Si and Ce Contents on the Nozzle Clogging in a REM Alloyed Stainless Steel. Steel Research International, 2015, 86, 1279-1288.	1.8	25
151	Dense and translucent BaZr x Ce 0.8â^' x Y 0.2 O 3â^' δ (x = 0.5, 0.6, 0.7) proton conductors prepared by spark plasma sintering. Scripta Materialia, 2015, 107, 145-148.	5.2	16
152	The Effect of Different Non-Metallic Inclusions on the Machinability of Steels. Materials, 2015, 8, 751-783.	2.9	169
153	Design of Magnetic Fields for Half and Full Type Electromagnetic Swirl Flow Generators. Steel Research International, 2015, 86, 361-374.	1.8	10
154	A Mathematical Modeling Study of Bubble Formations in a Molten Steel Bath. Metallurgical and Materials Transactions B: Process Metallurgy and Materials Processing Science, 2015, 46, 2628-2638.	2.1	18
155	Preparation of 30mol.% Y-doped hafnia (Hf0.7Y0.3O2-Î) using a modified solid-state reaction method. Ceramics International, 2015, 41, 2611-2615.	4.8	6
156	Sintering behaviour of the protonic conductors BaZrxCe0.8-xLn0.2O3-δ (x=0.8, 0.5, 0.1; Ln=Y, Sm, Gd, Dy) during the solid-state reactive-sintering process. Ceramics International, 2015, 41, 2558-2564.	4.8	17
157	A Mathematical Modeling Study of Tracer Mixing in a Continuous Casting Tundish. Metallurgical and Materials Transactions B: Process Metallurgy and Materials Processing Science, 2015, 46, 169-190.	2.1	38
158	Investigation of Slag Foaming by Additions of Briquettes in the EAF during Stainless Steel Production. Steel Research International, 2015, 86, 146-153.	1.8	6
159	Characterization of Briquettes Used for Slag Foaming in the EAF during Stainless Steel Production. Steel Research International, 2015, 86, 137-145.	1.8	2
160	Effect of Sulfur Content on Inclusion and Microstructure Characteristics in Steels with Ti2O3 and TiO2 Additions. ISIJ International, 2014, 54, 2907-2916.	1.4	32
161	An Experimental and Thermodynamic Study of Non-Metallic Inclusions in High Si Stainless Steels Regarding Clogging During Casting. Steel Research International, 2014, 85, 1410-1417.	1.8	12
162	The Use of an Enhanced Eulerian Deposition Model to Investigate Nozzle Clogging During Continuous Casting of Steel. Metallurgical and Materials Transactions B: Process Metallurgy and Materials Processing Science, 2014, 45, 2414-2424.	2.1	25

#	Article	IF	CITATIONS
163	A Study of Postâ€Combustion in an AOD Flue. Steel Research International, 2014, 85, 1173-1184.	1.8	4
164	Threeâ€ <scp>D</scp> imensional Investigations of Inclusions in Ferroalloys. Steel Research International, 2014, 85, 659-669.	1.8	20
165	Oxidation of Water Atomized Metal Powders. Steel Research International, 2014, 85, 1629-1638.	1.8	7
166	Application of Different Extraction Methods for Investigation of Nonmetallic Inclusions and Clusters in Steels and Alloys. Advances in Materials Science and Engineering, 2014, 2014, 1-7.	1.8	29
167	A Threeâ€ <scp>D</scp> imensional Threeâ€ <scp>P</scp> hase Model of Gas Injection in <scp>AOD</scp> Converters. Steel Research International, 2014, 85, 376-387.	1.8	10
168	Visible light-driven g-C ₃ N ₄ /m-Ag ₂ Mo ₂ O ₇ composite photocatalysts: synthesis, enhanced activity and photocatalytic mechanism. RSC Advances, 2014, 4, 51008-51015.	3.6	41
169	Fabrication of novel g-C ₃ N ₄ /nanocage ZnS composites with enhanced photocatalytic activities under visible light irradiation. CrystEngComm, 2014, 16, 4485-4492.	2.6	64
170	Mathematical and Physical Simulation of a Top Blown Converter. Steel Research International, 2014, 85, 273-281.	1.8	52
171	Ionic conductivity of dense BaZr0.5Ce0.3Ln0.2O3â^î^ (LnÂ=ÂY, Sm, Gd, Dy) electrolytes. Journal of Power Sources, 2014, 272, 786-793.	7.8	46
172	On the deposition of particles in liquid metals onto vertical ceramic walls. International Journal of Multiphase Flow, 2014, 62, 152-160.	3.4	22
173	Partial Equilibrium Prediction of Solidification and Carbide Precipitation in Ti-added High Cr Cast Irons. ISIJ International, 2014, 54, 374-383.	1.4	8
174	Investigating the Effect of Slag on Decarburization in an AOD Converter Using a Fundamental Model. Steel Research International, 2013, 84, 169-177.	1.8	7
175	Simulations of the Ladle Teeming Process and Verification With Pilot Experiment. Steel Research International, 2013, 84, 276-287.	1.8	3
176	KTH Steel Scrap Model – Iron and Steel Flow in the Swedish Society 1889–2010. Journal for Manufacturing Science and Production, 2013, 13, .	0.1	3
177	Fundamental decarburisation model of AOD process. Ironmaking and Steelmaking, 2013, 40, 390-397.	2.1	16
178	Optimisation of stirring conditions during vacuum degassing in order to lower inclusion content in tool steel. Ironmaking and Steelmaking, 2013, 40, 231-237.	2.1	7
179	Influence of final stirring treatment on inclusion number in tool steel. Ironmaking and Steelmaking, 2013, 40, 407-412.	2.1	2
180	Preliminary investigation of influence of temperature on decarburisation using fundamental AOD model. Ironmaking and Steelmaking, 2013, 40, 551-558.	2.1	5

#	Article	IF	CITATIONS
181	Uphill Teeming Utilizing TurboSwirl to Control Flow Pattern in Mold. Steel Research International, 2013, 84, 837-844.	1.8	7
182	A Mathematical Model of the Solid Flow Behavior in a Real Dimension Blast Furnace: Effects of the Solid Volume Fraction on the Velocity Profile. Steel Research International, 2013, 84, 999-1010.	1.8	3
183	Mathematical Modeling of Scrap Melting in an EAF Using Electromagnetic Stirring. ISIJ International, 2013, 53, 48-55.	1.4	33
184	Turbulent Flow Phenomena and Ce2O3 Behavior during a Steel Teeming Process. ISIJ International, 2013, 53, 792-801.	1.4	12
185	Dynamic Precipitation Behavior of Secondary M7C3 Carbides in Ti-alloyed High Chromium Cast Iron. ISIJ International, 2013, 53, 1237-1244.	1.4	16
186	Mathematical Model of Solid Flow Behavior in a Real Dimension Blast Furnace. ISIJ International, 2013, 53, 979-987.	1.4	13
187	Determination of Size Distribution and Probable Maximum Size of Inclusions in AISI304 Stainless Steel. ISIJ International, 2013, 53, 1968-1973.	1.4	4
188	Estimation of the Maximum Carbide Size in a Hypereutectic High Chromium Cast Iron Alloyed with Titanium. ISIJ International, 2013, 53, 2176-2183.	1.4	5
189	Effects of Primary Oxide and Oxide-Nitride Particles on the Solidification Structure in a Fe-20 mass%Cr Alloy Deoxidised with Ti and M (M = Zr or Ce). ISIJ International, 2013, 53, 221-229.	1.4	7
190	Effect of Secondary Nitride Particles on Grain Growth in a Fe-20 mass% Cr Alloy Deoxidised with Ti and Zr. ISIJ International, 2013, 53, 476-483.	1.4	18
191	Influence of ladle slag additions on BOF process under production conditions. Ironmaking and Steelmaking, 2012, 39, 318-326.	2.1	4
192	Influence of ladle slag additions on BOF process performance. Ironmaking and Steelmaking, 2012, 39, 378-385.	2.1	11
193	Influence of Liquid Metal Properties on Water Atomised Iron Powders. ISIJ International, 2012, 52, 2130-2138.	1.4	4
194	Interpretation of Tap Induced Cyclic Temperatures in the Blast Furnace Lining. Steel Research International, 2012, 83, 695-704.	1.8	0
195	An inâ€Depth Modelâ€Based Analysis of Decarburization in the AOD Process. Steel Research International, 2012, 83, 1039-1052.	1.8	16
196	Multiphysics modeling of an inductionâ€stirred ladle in two and three dimensions. International Journal for Numerical Methods in Fluids, 2012, 70, 1378-1392.	1.6	1
197	Application of Statistics of Extreme Values for Inclusions in Stainless Steel on Different Stages of Steel Making Process. ISIJ International, 2011, 51, 2056-2063.	1.4	7
198	Application of Extreme Value Analysis for Two- and Three-Dimensional Determinations of the Largest Inclusion in Metal Samples. ISIJ International, 2011, 51, 593-602.	1.4	31

#	Article	IF	CITATIONS
199	Mathematical Comparison of Two VOD Nozzle Jets. ISIJ International, 2011, 51, 1637-1646.	1.4	6
200	Mathematical Modeling of VOD Oxygen Nozzle Jets. Steel Research International, 2011, 82, 249-259.	1.8	11
201	Analysis of Largest Sulfide Inclusions in Low Carbon Steel by Using Statistics of Extreme Values. Steel Research International, 2011, 82, 313-322.	1.8	18
202	Petrographical study of microstructural evolution of EAF duplex stainless steelmaking slags. Ironmaking and Steelmaking, 2011, 38, 90-100.	2.1	9
203	Mixing Time in a Side-Blown Converter. ISIJ International, 2010, 50, 663-667.	1.4	31
204	Methodological Progress for Computer Simulation of Solidification and Casting. ISIJ International, 2010, 50, 1724-1734.	1.4	9
205	Simulation of the Steel Sampling Process. ISIJ International, 2010, 50, 1746-1755.	1.4	6
206	Observed behavior of various oxide inclusions in front of a solidifying low-carbon steel shell. Journal of Materials Science, 2010, 45, 2157-2164.	3.7	12
207	Heat Transfer Modelling of a Blast Furnace Hearth. Steel Research International, 2010, 81, 186-196.	1.8	13
208	On the Role of Non-metallic Inclusions in the Nucleation of Acicular Ferrite in Steels. ISIJ International, 2009, 49, 1063-1074.	1.4	266
209	Distribution of metal droplets in top slags during ladle treatment. Ironmaking and Steelmaking, 2008, 35, 575-588.	2.1	9
210	The Effect of Ladle Treatment on Inclusion Composition in Tool Steel Production. Steel Research International, 2008, 79, 261-270.	1.8	11
211	Effect of Top Slag Composition on Inclusion Characteristics during Vacuum Degassing of Tool Steel. Steel Research International, 2007, 78, 522-530.	1.8	18
212	Development of Flow Field and Temperature Distribution during Changing Divergent Angle of the Nozzle When Using Swirl Flow in a Square Continuous Casting Billet Mould. ISIJ International, 2007, 47, 80-87.	1.4	34
213	Characteristics of Metal Droplets in Slag Tapped from the Blast Furnace. Steel Research International, 2006, 77, 5-13.	1.8	1
214	Change of Inclusion Characteristics during Vacuum Degassing of Tool Steel. Steel Research International, 2006, 77, 392-400.	1.8	13
215	Physical-modeling Study of Fluid Flow and Gas Penetration in a Side-blown AOD Converter. ISIJ International, 2006, 46, 523-529.	1.4	19
216	Process model of inclusion separation in a stirred steel ladle. Scandinavian Journal of Metallurgy, 2005, 34, 41-56.	0.3	29

#	Article	IF	CITATIONS
217	The effect of swirl flow in an immersion nozzle on the heat and fluid flow in a billet continuous casting mold. Scandinavian Journal of Metallurgy, 2004, 33, 22-28.	0.3	22
218	Inclusion Growth and Removal in Gas‣tirred Ladles. Steel Research International, 2004, 75, 128-138.	1.8	51
219	An Experimental Study of the Velocity Field during Filling of an Ingot Mould. Steel Research International, 2003, 74, 423-430.	1.8	6
220	Modeling micro-inclusion growth and separation ingas-stirred ladles. Scandinavian Journal of Metallurgy, 2002, 31, 134-147.	0.3	52
221	Most relevant mechanisms of inclusion growth in an induction-stirred ladle. Scandinavian Journal of Metallurgy, 2002, 31, 210-220.	0.3	23
222	Inclusions in commercial low and medium carbon ferromanganese. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2001, 32, 1049-1056.	2.2	10
223	Mathematical Modeling of Iron and Steel Making Processes. A Mathematical Model of the Heat Transfer and Fluid Flow in AOD Nozzles and its Use to Study the Conditions at the Gas/Steel Interface ISIJ International, 2001, 41, 1156-1164.	1.4	8
224	A Thermodynamic and Kinetic Model of Reoxidation and Desulphurisation in the Ladle Furnace ISIJ International, 2000, 40, 1080-1088.	1.4	40
225	A Model of an Induction-stirred Ladle Accounting for Slag and Surface Deformation ISIJ International, 1999, 39, 772-778.	1.4	17
226	Modeling of Fluid Flow Conditions around the Slag/Metal Interface in a Gas-stirred Ladle ISIJ International, 1996, 36, 1127-1134.	1.4	73
227	Arc characteristics in gasâ€metal arc welding of aluminum using argon as the shielding gas. Journal of Applied Physics, 1993, 74, 5997-6006.	2.5	23