Daria I Tishkevich

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2286512/publications.pdf

Version: 2024-02-01

68 3,877 39 61
papers citations h-index g-index

70 70 70 1935
all docs docs citations times ranked citing authors

#	Article	IF	Citations
1	Mechanisms of elastoplastic deformation and their effect on hardness of nanogranular Ni-Fe coatings. International Journal of Mechanical Sciences, 2022, 215, 106952.	6.7	14
2	Impact of the Nanocarbon on Magnetic and Electrodynamic Properties of the Ferrite/Polymer Composites. Nanomaterials, 2022, 12, 868.	4.1	73
3	Study of comprehensive shielding behaviors of chambersite deposit for neutron and gamma ray. Progress in Nuclear Energy, 2022, 146, 104155.	2.9	60
4	Impact of the A-site rare-earth ions (Ln3+ – Sm3+, Eu3+, Gd3+) on structure and electrical properties of the high entropy LnCr0.2Mn0.2Fe0.2Co0.2Ni0.2O3 perovskites. Ceramics International, 2022, 48, 9239-9247.	4.8	20
5	Growth mechanism study of silver nanostructures in a limited volume. Materials Chemistry and Physics, 2022, 283, 126016.	4.0	3
6	Optical and gamma ray shielding behavior of PbO–B2O3–CuO–CaO glasses. Journal of Materials Research and Technology, 2022, 18, 2494-2505.	5.8	11
7	Insights into Sorption–Mineralization Mechanism for Sustainable Granular Composite of MgO-CaO-Al2O3-SiO2-CO2 Based on Nanosized Adsorption Centers and Its Effect on Aqueous Cu(II) Removal. Nanomaterials, 2022, 12, 116.	4.1	3
8	Upcycling of boron bearing blast furnace slag as highly cost-effective shield for protection of neutron radiation hazard: An innovative way and proposal of shielding mechanism. Journal of Cleaner Production, 2022, 355, 131817.	9.3	49
9	A Study of Ta2O5 Nanopillars with Ni Tips Prepared by Porous Anodic Alumina Through-Mask Anodization. Nanomaterials, 2022, 12, 1344.	4.1	17
10	Creation and Magnetic Study of Ferrites with Magnetoplumbite Structure Multisubstituted by Al3+, Cr3+, Ga3+, and In3+ Cations. Nanomaterials, 2022, 12, 1306.	4.1	18
11	WCu composites fabrication and experimental study of the shielding efficiency against ionizing radiation. Radiation Physics and Chemistry, 2022, 200, 110175.	2.8	24
12	Isostatic Hot Pressed W–Cu Composites with Nanosized Grain Boundaries: Microstructure, Structure and Radiation Shielding Efficiency against Gamma Rays. Nanomaterials, 2022, 12, 1642.	4.1	51
13	Studies of physical, optical, and radiation shielding properties of Bi2O3-TeO2-MgO-Na2O-B2O3 glass system. Optik, 2022, 268, 169680.	2.9	2
14	The Interrelation of Synthesis Conditions and Wettability Properties of the Porous Anodic Alumina Membranes. Nanomaterials, 2022, 12, 2382.	4.1	14
15	The effect of the applied potentials difference on the phase composition of Co nanowires. Journal of Magnetism and Magnetic Materials, 2021, 517, 167382.	2.3	4
16	The influence of the synthesis conditions on the magnetic behaviour of the densely packed arrays of Ni nanowires in porous anodic alumina membranes. RSC Advances, 2021, 11, 3952-3962.	3.6	40
17	Efficiency of Magnetostatic Protection Using Nanostructured Permalloy Shielding Coatings Depending on Their Microstructure. Nanomaterials, 2021, 11, 634.	4.1	10
18	Fabrication of exchange coupled hard/soft magnetic nanocomposites: Correlation between composition, magnetic, optical and microwave properties. Arabian Journal of Chemistry, 2021, 14, 102992.	4.9	46

#	Article	IF	Citations
19	Impact of the heat treatment conditions on crystal structure, morphology and magnetic properties evolution in BaM nanohexaferrites. Journal of Alloys and Compounds, 2021, 866, 158961.	5.5	65
20	Experimental and Theoretical Study of Radiation Shielding Features of CaO-K2O-Na2O-P2O5 Glass Systems. Materials, 2021, 14, 3772.	2.9	59
21	Magnetic Properties of the Densely Packed Ultra-Long Ni Nanowires Encapsulated in Alumina Membrane. Nanomaterials, 2021, 11, 1775.	4.1	26
22	Radiation shielding and mechanical properties of Bi2O3–Na2O–TiO2–ZnO–TeO2 glass system. Radiation Physics and Chemistry, 2021, 186, 109556.	2.8	52
23	Electrocatalytic activity of various hexagonal ferrites in OER process. Materials Chemistry and Physics, 2021, 270, 124818.	4.0	51
24	Gamma-Ray Attenuation and Exposure Buildup Factor of Novel Polymers in Shielding Using Geant4 Simulation. Materials, 2021, 14, 5051.	2.9	57
25	Experimental and theoretical analysis of radiation shielding properties of strontium-borate-tellurite glasses. Optical Materials, 2021, 121, 111589.	3.6	28
26	The origin of the dual ferroic properties in quasi-centrosymmetrical SrFe12â xlnxO19 hexaferrites. Journal of Alloys and Compounds, 2021, 886, 161249.	5.5	37
27	Electrodeposition conditions-dependent crystal structure, morphology and electronic properties of Bi films. Journal of Alloys and Compounds, 2021, 887, 161451.	5.5	28
28	Correlation between microstructure parameters and anti-cancer activity of the [Mn0.5Zn0.5](EuxNdxFe2-2x)O4 nanoferrites produced by modified sol-gel and ultrasonic methods. Ceramics International, 2020, 46, 7346-7354.	4.8	128
29	The effect of doping of TiO2 thin films with low-energy O2+ ions on increasing the efficiency of hydrogen evolution in photocatalytic reactions of water splitting. Journal of Materials Science: Materials in Electronics, 2020, 31, 21142-21153.	2.2	23
30	Modification of an SiO\$\${}_{2}\$\$(Au)/Si Surface by Irradiation with Argon Ions. Moscow University Physics Bulletin (English Translation of Vestnik Moskovskogo Universiteta, Fizika), 2020, 75, 225-229.	0.4	1
31	Multilayer spin-valve CoFeP/Cu nanowires with giant magnetoresistance. Journal of Alloys and Compounds, 2020, 846, 156474.	5 . 5	24
32	Early-Stage Growth Mechanism and Synthesis Conditions-Dependent Morphology of Nanocrystalline Bi Films Electrodeposited from Perchlorate Electrolyte. Nanomaterials, 2020, 10, 1245.	4.1	53
33	Morphology and Microstructure Evolution of Gold Nanostructures in the Limited Volume Porous Matrices. Sensors, 2020, 20, 4397.	3.8	11
34	Peculiarities of the microwave properties of hard–soft functional composites SrTb _{0.01} Tm _{0.01} Fe _{11.98} O ₁₉ –AFe ₂ O _{4<(A = Co, Ni, Zn, Cu, or Mn). RSC Advances, 2020, 10, 32638-32651.}	:/ s ueb>	92
35	The study of the applicability of ionizing radiation to increase the photocatalytic activity of TiO2 thin films. Journal of Nanostructure in Chemistry, 2020, 10, 331-346.	9.1	22
36	The Effect of Heat Treatment on the Microstructure and Mechanical Properties of 2D Nanostructured Au/NiFe System. Nanomaterials, 2020, 10, 1077.	4.1	72

#	Article	IF	Citations
37	Influence of the dysprosium ions on structure, magnetic characteristics and origin of the reflection losses in the Ni–Co spinels. Journal of Alloys and Compounds, 2020, 841, 155667.	5.5	109
38	Electrochemical Behaviour of Ti/Al2O3/Ni Nanocomposite Material in Artificial Physiological Solution: Prospects for Biomedical Application. Nanomaterials, 2020, 10, 173.	4.1	55
39	Functional Bi Coatings as A Perspective Material for Radiation Shields Production against Electron Radiation. Advanced Materials Letters, 2020, 11, 52-56.	0.6	1
40	Copper nanostructures into pores of SiO2/Si template: galvanic displacement, chemical and structural characterization. Materials Research Express, 2019, 6, 105058.	1.6	6
41	Studying the Thermodynamic Properties of Composite Magnetic Material Based on Anodic Alumina. Russian Microelectronics, 2019, 48, 107-118.	0.5	45
42	Formation and corrosion properties of Ni-based composite material in the anodic alumina porous matrix. Journal of Alloys and Compounds, 2019, 804, 139-146.	5.5	44
43	Features of the Growth Processes and Magnetic Domain Structure of NiFe Nano-objects. Journal of Physical Chemistry C, 2019, 123, 26957-26964.	3.1	91
44	Synthesis, phase composition and structural and conductive properties of ferroelectric microparticles based on ATiOx (A = Ba, Ca, Sr). Ceramics International, 2019, 45, 17236-17242.	4.8	39
45	Control of structural parameters and thermal conductivity of BeO ceramics using heavy ion irradiation and post-radiation annealing. Ceramics International, 2019, 45, 15412-15416.	4.8	43
46	Immobilization of boron-rich compound on Fe3O4 nanoparticles: Stability and cytotoxicity. Journal of Alloys and Compounds, 2019, 797, 573-581.	5.5	117
47	Control of Growth Mechanism of Electrodeposited Nanocrystalline NiFe Films. Journal of the Electrochemical Society, 2019, 166, D173-D180.	2.9	97
48	Fe3O4 Nanoparticles for Complex Targeted Delivery and Boron Neutron Capture Therapy. Nanomaterials, 2019, 9, 494.	4.1	128
49	Influence of the charge ordering and quantum effects in heterovalent substituted hexaferrites on their microwave characteristics. Journal of Alloys and Compounds, 2019, 788, 1193-1202.	5.5	105
50	Function composites materials for shielding applications: Correlation between phase separation and attenuation properties. Journal of Alloys and Compounds, 2019, 771, 238-245.	5.5	63
51	Synthesis of gold nanostructures using wet chemical deposition in SiO ₂ /Si template. Lithuanian Journal of Physics, 2019, 59, .	0.4	7
52	Magnetic and dipole moments in indium doped barium hexaferrites. Journal of Magnetism and Magnetic Materials, 2018, 457, 83-96.	2.3	113
53	Effect of the Synthesis Conditions and Microstructure for Highly Effective Electron Shields Production Based on Bi Coatings. ACS Applied Energy Materials, 2018, 1, 1695-1702.	5.1	65
54	Correlation of the atomic structure, magnetic properties and microwave characteristics in substituted hexagonal ferrites. Journal of Magnetism and Magnetic Materials, 2018, 462, 127-135.	2.3	107

#	Article	IF	CITATIONS
55	Correlation of the synthesis conditions and microstructure for Bi-based electron shields production. Journal of Alloys and Compounds, 2018, 749, 1036-1042.	5.5	72
56	Anomalies in Ni-Fe nanogranular films growth. Journal of Alloys and Compounds, 2018, 748, 970-978.	5.5	93
57	Polarization origin and iron positions in indium doped barium hexaferrites. Ceramics International, 2018, 44, 290-300.	4.8	240
58	Electrochemical deposition regimes and critical influence of organic additives on the structure of Bi films. Journal of Alloys and Compounds, 2018, 735, 1943-1948.	5.5	87
59	Temperature evolution of the structure parameters and exchange interactions in BaFe12â^'xlnxO19. Journal of Magnetism and Magnetic Materials, 2018, 466, 393-405.	2.3	98
60	Preparation and morphology-dependent wettability of porous alumina membranes. Beilstein Journal of Nanotechnology, 2018, 9, 1423-1436.	2.8	42
61	Preparation and investigation of structure, magnetic and dielectric properties of (BaFe11.9Al0.1O19)1 (BaTiO3) bicomponent ceramics. Ceramics International, 2018, 44, 21295-21302.	4.8	130
62	Magnetic, dielectric and microwave properties of the BaFe12-xGaxO19 (x ≶.2) solid solutions at room temperature. Journal of Magnetism and Magnetic Materials, 2017, 442, 300-310.	2.3	105
63	AC and DC-shielding properties for the Ni80Fe20/Cu film structures. Journal of Magnetism and Magnetic Materials, 2017, 443, 142-148.	2.3	86
64	Effect of gallium doping on electromagnetic properties of barium hexaferrite. Journal of Physics and Chemistry of Solids, 2017, 111, 142-152.	4.0	99
65	Investigation into the structural features and microwave absorption of doped barium hexaferrites. Dalton Transactions, 2017, 46, 9010-9021.	3.3	136
66	Template Assisted Ni Nanowires Fabrication. Materials Science Forum, 0, 946, 235-241.	0.3	42
67	Formation and Corrosion Behavior of Nickel/Alumina Nanocomposites. Solid State Phenomena, 0, 299, 100-106.	0.3	39
68	Thermal Stability of Nano-Crystalline Nickel Electrodeposited into Porous Alumina. Solid State Phenomena, 0, 299, 281-286.	0.3	43