Mark V Brady

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2286084/publications.pdf

Version: 2024-02-01

430874 477307 2,180 31 18 29 citations h-index g-index papers 34 34 34 3270 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Intensive agriculture reduces soil biodiversity across Europe. Global Change Biology, 2015, 21, 973-985.	9.5	641
2	Soil food web properties explain ecosystem services across European land use systems. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 14296-14301.	7.1	520
3	The Interdependence between Rainfall and Temperature: Copula Analyses. Scientific World Journal, The, 2012, 2012, 1-11.	2.1	115
4	Billions in Misspent EU Agricultural Subsidies Could Support the Sustainable Development Goals. One Earth, 2020, 3, 237-250.	6.8	111
5	Impacts of Decoupled Agricultural Support on Farm Structure, Biodiversity and Landscape Mosaic: Some EU Results. Journal of Agricultural Economics, 2009, 60, 563-585.	3.5	101
6	Managing ecosystem services for agriculture: Will landscape-scale management pay?. Ecological Economics, 2014, 99, 53-62.	5.7	86
7	An agent-based approach to modeling impacts of agricultural policy on land use, biodiversity and ecosystem services. Landscape Ecology, 2012, 27, 1363-1381.	4.2	77
8	Urban and agricultural soils: conflicts and trade-offs in the optimization of ecosystem services. Urban Ecosystems, 2014, 17, 239-253.	2.4	66
9	Valuing Supporting Soil Ecosystem Services in Agriculture: A Natural Capital Approach. Agronomy Journal, 2015, 107, 1809-1821.	1.8	45
10	Optimizing intermediate ecosystem services in agriculture using rules based on landscape composition and configuration indices. Ecological Economics, 2016, 128, 214-223.	5.7	44
11	Payments by modelled results: A novel design for agri-environmental schemes. Land Use Policy, 2021, 102, 105230.	5.6	44
12	Improving agricultural pollution abatement through result-based payment schemes. Land Use Policy, 2018, 77, 209-219.	5.6	42
13	Impacts of the EU's Common Agricultural Policy "Greening―Reform on Agricultural Development, Biodiversity, and Ecosystem Services. Applied Economic Perspectives and Policy, 2020, 42, 716-738.	5.6	39
14	The relative cost-efficiency of arable nitrogen management in Sweden. Ecological Economics, 2003, 47, 53-70.	5.7	38
15	Managing soil natural capital: An effective strategy for mitigating future agricultural risks?. Agricultural Systems, 2014, 129, 30-39.	6.1	31
16	Nitrogen in the Baltic Seaâ€"policy implications of stock effects. Journal of Environmental Management, 2002, 66, 91-103.	7.8	28
17	How to Design a Targeted Agricultural Subsidy System: Efficiency or Equity?. PLoS ONE, 2012, 7, e41225.	2.5	22
18	A suboptimal array of options erodes the value of CAP ecological focus areas. Land Use Policy, 2019, 85, 407-418.	5.6	22

#	Article	IF	CITATIONS
19	Promise and performance of agricultural nutrient management policy: Lessons from the Baltic Sea. Ambio, 2022, 51, 36-50.	5.5	17
20	Is Passive Farming A Problem for Agriculture in the EU?. Journal of Agricultural Economics, 2017, 68, 632-650.	3.5	15
21	Effects of farm type on food production, landscape openness, grassland biodiversity, and greenhouse gas emissions in mixed agricultural-forestry regions. Agricultural Systems, 2021, 189, 103071.	6.1	14
22	Roadmap for Valuing Soil Ecosystem Services to Inform Multi-Level Decision-Making in Agriculture. Sustainability, 2019, 11, 5285.	3.2	12
23	Strengthening the policy framework to resolve lax implementation of the Baltic Sea Action Plan for agriculture. Ambio, 2022, 51, 69-83.	5. 5	9
24	Joint Production of Food and Wildlife: Uniform Measures or Nature Oases?. Environmental and Resource Economics, 2014, 59, 187-205.	3.2	8
25	How unnecessarily high abatement costs and unresolved distributional issues undermine nutrient reductions to the Baltic Sea. Ambio, 2022, 51, 51-68.	5.5	7
26	A combined approach to assess the impacts of Ecological Focus Areas on regional structural development and agricultural land use. Review of Agricultural Food and Environmental Studies, 2017, 98, 111-144.	0.7	6
27	Passive farming and land development: A real options approach. Land Use Policy, 2019, 80, 32-46.	5.6	6
28	Disaggregated Impacts of CAP Reforms. , 2011, , .		4
29	Managing soil natural capital: a prudent strategy for adapting to future risks. Annals of Operations Research, 2017, 255, 439-463.	4.1	3
30	A harmonized and spatially explicit dataset from 16 million payments from the European Union's Common Agricultural Policy for 2015. Patterns, 2021, 2, 100236.	5.9	3
31	Optimizing Species Richness in Mosaic Landscapes: A Probabilistic Model of Species-Area Relationships. Frontiers in Conservation Science, 2021, 2, .	1.9	О