Ville Alopaeus

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2285686/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Modelling aerosol transport and virus exposure with numerical simulations in relation to SARS-CoV-2 transmission by inhalation indoors. Safety Science, 2020, 130, 104866.	2.6	349
2	Simulation of the population balances for liquid–liquid systems in a nonideal stirred tank. Part 2—parameter fitting and the use of the multiblock model for dense dispersions. Chemical Engineering Science, 2002, 57, 1815-1825.	1.9	173
3	Simulation of the population balances for liquid–liquid systems in a nonideal stirred tank. Part 1 Description and qualitative validation of the model. Chemical Engineering Science, 1999, 54, 5887-5899.	1.9	161
4	Modelling local bubble size distributions in agitated vessels. Chemical Engineering Science, 2007, 62, 721-740.	1.9	146
5	Validation of bubble breakage, coalescence and mass transfer models for gas–liquid dispersion in agitated vessel. Chemical Engineering Science, 2006, 61, 218-228.	1.9	144
6	CFD modeling of radial spreading of flow in trickle-bed reactors due to mechanical and capillary dispersion. Chemical Engineering Science, 2009, 64, 207-218.	1.9	94
7	Solubility of Organosolv Lignin in γâ€Valerolactone/Water Binary Mixtures. ChemSusChem, 2016, 9, 2939-2947.	3.6	72
8	The Henry's law constant of N2O and CO2 in aqueous binary and ternary amine solutions (MEA, DEA,) Tj ETQqO	0 0 rgBT /0 1.4	Dverlock 10 ⁻

9	Modeling method for combining fluid dynamics and algal growth in a bubble column photobioreactor. Chemical Engineering Journal, 2013, 229, 559-568.	6.6	59
10	Solution of population balances with breakage and agglomeration by high-order moment-conserving method of classes. Chemical Engineering Science, 2006, 61, 6732-6752.	1.9	50
11	Modelling mass transfer in an aerated 0.2m3 vessel agitated by Rushton, Phasejet and Combijet impellers. Chemical Engineering Journal, 2008, 142, 95-108.	6.6	47
12	Novel micro-distillation column for process development. Chemical Engineering Research and Design, 2009, 87, 705-710.	2.7	42
13	Improved Hydrodynamic Model for Wetting Efficiency, Pressure Drop, and Liquid Holdup in Trickle-Bed Reactors. Industrial & Engineering Chemistry Research, 2008, 47, 8436-8444.	1.8	40
14	Vapor–Liquid Equilibria, Excess Enthalpy, and Density of Aqueous γ-Valerolactone Solutions Journal of Chemical & Engineering Data, 2016, 61, 881-890.	1.0	39
15	A Model for Chlorine Dioxide Delignification of Chemical Pulp. Journal of Wood Chemistry and Technology, 2010, 30, 230-268.	0.9	37
16	Hydrogen solubility in heavy oil systems: Experiments and modeling. Fuel, 2014, 137, 393-404.	3.4	36
17	Experimental and Theoretical Thermodynamic Study of Distillable Ionic Liquid 1,5-Diazabicyclo[4.3.0]non-5-enium Acetate. Industrial & Engineering Chemistry Research, 2016, 55, 10445-10454.	1.8	35
18	Compartmental modeling of large stirred tank bioreactors with high gas volume fractions. Chemical Engineering Journal, 2018, 334, 2319-2334.	6.6	35

#	Article	IF	CITATIONS
19	Vapor Pressures, Densities, and PC-SAFT Parameters for 11 Bio-compounds. International Journal of Thermophysics, 2019, 40, 1.	1.0	34
20	Solubility of carbon dioxide in aqueous solutions of diisopropanolamine and methyldiethanolamine. Fluid Phase Equilibria, 2010, 293, 101-109.	1.4	33
21	Measurements and modeling of CO2 solubility in 1,8-diazabicyclo-[5.4.0]-undec-7-ene—Glycerol solutions. Fluid Phase Equilibria, 2014, 374, 25-36.	1.4	31
22	Detailed Modeling of Kraft Pulping Chemistry. Delignification. Industrial & Engineering Chemistry Research, 2020, 59, 12977-12985.	1.8	31
23	Numerical solution of moment-transformed population balance equation with fixed quadrature points. Chemical Engineering Science, 2006, 61, 4919-4929.	1.9	29
24	Dynamic modeling of local reaction conditions in an agitated aerobic fermenter. AICHE Journal, 2006, 52, 1673-1689.	1.8	29
25	A new simple approach for the scale-up of aerated stirred tanks. Chemical Engineering Research and Design, 2015, 95, 150-161.	2.7	29
26	Catalyst Screening and Kinetic Modeling for CO Production by High Pressure and Temperature Reverse Water Gas Shift for Fischer–Tropsch Applications. Industrial & Engineering Chemistry Research, 2017, 56, 13262-13272.	1.8	29
27	Chemical Recovery of γ-Valerolactone/Water Biorefinery. Industrial & Engineering Chemistry Research, 2018, 57, 15147-15158.	1.8	28
28	Characteristics of liquid and tracer dispersion in trickle-bed reactors: Effect on CFD modeling and experimental analyses. Computers and Chemical Engineering, 2011, 35, 41-49.	2.0	27
29	Development of a unique modular distillation column using 3D printing. Chemical Engineering and Processing: Process Intensification, 2016, 109, 136-148.	1.8	27
30	Modeling of nickel-based hydrotalcite catalyst coated on heat exchanger reactors for CO2 methanation. Chemical Engineering Journal, 2018, 349, 694-707.	6.6	27
31	An Analytical Model for Capillary Pressure–Saturation Relation for Gas–Liquid System in a Packed-Bed of Spherical Particles. Transport in Porous Media, 2009, 77, 17-40.	1.2	26
32	Lignin oxidation mechanisms under oxygen delignification conditions. Part 3. Reaction pathways and modeling. Holzforschung, 2011, 65, .	0.9	26
33	Investigation of drag models in CFD modeling and comparison to experiments of liquid–solid fluidized systems. International Journal of Mineral Processing, 2012, 104-105, 58-70.	2.6	25
34	Heavy oil characterization method for PC-SAFT. Fuel, 2014, 133, 216-223.	3.4	25
35	Solution of population balances with growth and nucleation by high order moment-conserving method of classes. Chemical Engineering Science, 2007, 62, 2277-2289.	1.9	23
36	Feasibility of thermal separation in recycling of the distillable ionic liquid [DBNH][OAc] in cellulose fiber production. Chemical Engineering Research and Design, 2016, 114, 287-298.	2.7	23

#	Article	IF	CITATIONS
37	Ternary and Binary LLE Measurements for Solvent (4-Methyl-2-pentanone and 2-Methyl-2-butanol) + Furfural + Water between 298 and 401 K. Journal of Chemical & Engineering Data, 2016, 61, 903-911.	1.0	23
38	Vapor pressure, vapor-liquid equilibria, liquid-liquid equilibria and excess enthalpy of the system consisting of isophorone, furfural, acetic acid and water. Chemical Engineering Science, 2018, 176, 19-34.	1.9	23
39	Thermodynamics of aqueous solutions of methyldiethanolamine and diisopropanolamine. Fluid Phase Equilibria, 2010, 299, 51-59.	1.4	22
40	Ternary and binary LLE measurements for solvent (2-methyltetrahydrofuran and cyclopentyl methyl) Tj ETQqO 0 (127-136.) rgBT /O 1.0	verlock 10 Tf 5 22
41	A dynamic model for plug flow reactor state profiles. Computers and Chemical Engineering, 2008, 32, 1494-1506.	2.0	21
42	Analysis of stirred tanks with twoâ€∉one models. AICHE Journal, 2009, 55, 2545-2552.	1.8	21
43	Hydrogen solubility in furfural and 2-propanol: Experiments and modeling. Journal of Chemical Thermodynamics, 2017, 112, 1-6.	1.0	21
44	Application of the compartmental model to the gas–liquid precipitation of CO ₂ a(OH) ₂ aqueous system in a stirred tank. AICHE Journal, 2017, 63, 378-386.	1.8	18
45	Approximate high flux corrections for multicomponent mass transfer models and some explicit methods. Chemical Engineering Science, 1999, 54, 4267-4271.	1.9	17
46	Measurements of H2S solubility in aqueous diisopropanolamine solutions and vapour pressure of diisopropanolamine. Fluid Phase Equilibria, 2013, 338, 164-171.	1.4	17
47	Modeling of Gasâ^'Liquid Packed-Bed Reactors with Momentum Equations and Local Interaction Closures. Industrial & Engineering Chemistry Research, 2006, 45, 8189-8198.	1.8	16
48	Control of reflux and reboil flow rates for milli and micro distillation. Chemical Engineering Research and Design, 2013, 91, 753-760.	2.7	16
49	A comprehensive thermodynamic study of heat stable acetic acid salt of monoethanolamine. International Journal of Greenhouse Gas Control, 2014, 22, 313-324.	2.3	16
50	Solubility of hydrogen in bio-oil compounds. Journal of Chemical Thermodynamics, 2016, 102, 406-412.	1.0	16
51	A calculation method for multicomponent mass transfer coefficient correlations. Computers and Chemical Engineering, 1999, 23, 1177-1182.	2.0	15
52	Distillable Protic Ionic Liquid 2-(Hydroxy)ethylammonium Acetate (2-HEAA): Density, Vapor Pressure, Vapor–Liquid Equilibrium, and Solid–Liquid Equilibrium. Industrial & Engineering Chemistry Research, 2014, 53, 19322-19330.	1.8	15
53	Mass-transfer calculation methods for transient diffusion within particles. AICHE Journal, 2000, 46, 2369-2372.	1.8	14
54	The Kinetics and Stoichiometry of the Reaction between Hypochlorous Acid and Chlorous Acid in Mildly Acidic Solutions. Industrial & Engineering Chemistry Research, 2009, 48, 6280-6286.	1.8	14

#	Article	IF	CITATIONS
55	Vapor–Liquid Equilibrium, Excess Molar Enthalpies, and Excess Molar Volumes of Binary Mixtures Containing Methyl Isobutyl Ketone (MIBK) and 2-Butanol, tert-Pentanol, or 2-Ethyl-1-hexanol. Journal of Chemical & Engineering Data, 2012, 57, 3092-3101.	1.0	14
56	Model for Degradation of Galactoglucomannan in Hot Water Extraction Conditions. Industrial & Engineering Chemistry Research, 2012, 51, 10338-10344.	1.8	14
57	Detailed modeling of the kraft pulping chemistry: carbohydrate reactions. AICHE Journal, 2020, 66, e16252.	1.8	14
58	The moment method for one-dimensional dynamic reactor models with axial dispersion. Computers and Chemical Engineering, 2011, 35, 423-433.	2.0	13
59	Quaternary and ternary LLE measurements for solvent (2-methyltetrahydrofuran and cyclopentyl) Tj ETQq1 1 0.7 Thermodynamics, 2018, 119, 61-75.	′84314 rgB 1.0	T /Overlock 13
60	Modelling the kraft pulping process on a fibre scale by considering the intrinsic heterogeneous nature of the lignocellulosic feedstock. Chemical Engineering Journal, 2022, 438, 135548.	6.6	13
61	Modeling and Simulation of an Industrial Trickle-Bed Reactor for Benzene Hydrogenation: Model Validation against Plant Data. Industrial & Engineering Chemistry Research, 2009, 48, 1866-1872.	1.8	12
62	Phase equilibria of binary systems of 3-methylthiophene with four different hydrocarbons. Fluid Phase Equilibria, 2010, 288, 155-160.	1.4	12
63	The role of Donnan effect in kraft cooking liquor impregnation and hot water extraction of wood. Holzforschung, 2013, 67, 511-521.	0.9	12
64	Measurements and modeling of LLE and HE for (methanol + 2,4,4-trimethyl-1-pentene), and LLE for (water + methanol + 2,4,4-trimethyl-1-pentene). Journal of Chemical Thermodynamics, 2015, 85, 120-128.	1.0	12
65	Modeling outdoors algal cultivation with compartmental approach. Chemical Engineering Journal, 2015, 259, 945-960.	6.6	12
66	Quaternary, Ternary, and Binary LLE Measurements for 2-Methoxy-2-methylpropane + Furfural + Acetic Acid + Water at Temperatures between 298 and 307 K. Journal of Chemical & Engineering Data, 2016, 61, 2458-2466.	1.0	12
67	Hydrogen Solubility of Shale Oil Containing Polar Phenolic Compounds. Industrial & Engineering Chemistry Research, 2017, 56, 8738-8747.	1.8	12
68	Physical Properties of 7-Methyl-1,5,7-triazabicyclo[4.4.0]dec-5-ene (mTBD). International Journal of Thermophysics, 2019, 40, 1.	1.0	12
69	Vaporâ^'Liquid Equilibrium for Methoxymethane + Methyl Formate, Methoxymethane + Hexane, and Methyl Formate + Methanol. Journal of Chemical & Engineering Data, 2011, 56, 2634-2640.	1.0	11
70	Vapor–Liquid Equilibrium for Methoxymethane + Thiophene, + Diethylsulfide, + 2-Methyl-2-propanethiol and 1-Hexene, + 1-Propanethiol. Journal of Chemical & Engineering Data, 2013, 58, 956-963.	1.0	11
71	Isothermal vapor–liquid equilibrium and excess molar enthalpies of the binary mixtures furfural+methyl isobutyl ketone, +2-butanol and +2-methyl-2-butanol. Fluid Phase Equilibria, 2014, 372, 85-99.	1.4	11
72	Mathematical model of precipitation of magnesium carbonate with carbon dioxide from the magnesium hydroxide slurry. Computers and Chemical Engineering, 2016, 87, 180-189.	2.0	11

#	Article	IF	CITATIONS
73	Population balance model and experimental validation for reactive dissolution of particle agglomerates. Computers and Chemical Engineering, 2018, 108, 240-249.	2.0	11
74	Modelling a molten salt thermal energy system – A validation study. Applied Energy, 2019, 233-234, 126-145.	5.1	11
75	Vapor–Liquid Equilibrium at 350 K, Excess Molar Enthalpies at 298 K, and Excess Molar Volumes at 298 K of Binary Mixtures Containing Ethyl Acetate, Butyl Acetate, and 2-Butanol. Journal of Chemical & Engineering Data, 2013, 58, 1011-1019.	1.0	10
76	A modified continuous flow apparatus for gas solubility measurements at high pressure and temperature with camera system. Fluid Phase Equilibria, 2014, 382, 150-157.	1.4	10
77	Population balance based modeling of changes in cellulose molecular weight distribution during ageing. Cellulose, 2015, 22, 151-163.	2.4	10
78	Dew points of pure DBN and DBU and vapor–liquid equilibria of water+DBN and water+DBU systems for cellulose solvent recycling. Fluid Phase Equilibria, 2016, 408, 79-87.	1.4	10
79	Modelling and dynamic simulation of a large MSF plant using local phase equilibrium and simultaneous mass, momentum, and energy solver. Computers and Chemical Engineering, 2017, 97, 242-258.	2.0	10
80	The effect of microwave on the crystallization process of magnesium carbonate from aqueous solutions. Powder Technology, 2018, 328, 358-366.	2.1	10
81	Application-Related Consideration of the Thermal Stability of [mTBDH][OAc] Compared to Amidine-Based Ionic Liquids in the Presence of Various Amounts of Water. Industrial & Engineering Chemistry Research, 2022, 61, 259-268.	1.8	10
82	Appropriate Simplifications in Calculation of Mass Transfer in a Multicomponent Rate-Based Distillation Tray Model. Industrial & Engineering Chemistry Research, 2000, 39, 4336-4345.	1.8	9
83	Solution of population balances by high order moment-conserving method of classes: reconstruction of a non-negative density distribution. Chemical Engineering Science, 2008, 63, 2741-2751.	1.9	9
84	Modelling of crystal growth of KDP in a 100dm3 suspension crystallizer using combination of CFD and multiblock model. Chemical Engineering Research and Design, 2010, 88, 1297-1303.	2.7	9
85	Phase equilibria on five binary systems containing 1-butanethiol and 3-methylthiophene in hydrocarbons. Fluid Phase Equilibria, 2010, 293, 157-163.	1.4	9
86	Comparison and validation of CFD models in liquid–solid suspensions. Canadian Journal of Chemical Engineering, 2011, 89, 696-706.	0.9	9
87	Analysis of concentration polydispersity in mixed liquid–liquid systems. Chemical Engineering Research and Design, 2014, 92, 612-618.	2.7	9
88	Comparative study: Absorption enthalpy of carbon dioxide into aqueous diisopropanolamine and monoethanolamine solutions and densities of the carbonated amine solutions. Fluid Phase Equilibria, 2014, 376, 85-95.	1.4	9
89	Hydrogen solubility measurements of analyzed tall oil fractions and a solubility model. Journal of Chemical Thermodynamics, 2017, 105, 15-20.	1.0	9
90	On approximate calculation of multicomponent mass transfer fluxes. Computers and Chemical Engineering, 2002, 26, 461-466.	2.0	8

#	Article	IF	CITATIONS
91	Vaporâ^'Liquid Equilibrium for Dimethyl Disulfide + Butane, + <i>trans</i> -But-2-ene, + 2-Methylpropane, + 2-Methylpropene, + Ethanol, and 2-Ethoxy-2-methylpropane. Journal of Chemical & Engineering Data, 2011, 56, 2501-2510.	1.0	8
92	Isobaric vapor–liquid equilibrium for binary systems containing benzothiophene. Fluid Phase Equilibria, 2011, 307, 180-184.	1.4	8
93	Phase equilibria on binary systems containing diethyl sulfide. Fluid Phase Equilibria, 2011, 301, 200-205.	1.4	8
94	Vapor–Liquid Equilibria, Excess Enthalpy, and Excess Volume of Binary Mixtures Containing an Alcohol (1-Butanol, 2-Butanol, or 2-Methyl-2-butanol) and 2-Ethoxy-2-methylbutane. Journal of Chemical & Engineering Data, 2012, 57, 3502-3509.	1.0	8
95	Vapor–Liquid Equilibrium of Ionic Liquid 7-Methyl-1,5,7-triazabicyclo[4.4.0]dec-5-enium Acetate and Its Mixtures with Water. Journal of Chemical & Engineering Data, 2020, 65, 2405-2421.	1.0	8
96	Vapor- liquid equilibrium for the n-dodecaneÂ+Âphenol and n-hexadecaneÂ+Âphenol systems at 523 K and 573 K. Fluid Phase Equilibria, 2021, 537, 112991.	1.4	8
97	Utilization of population balances in simulation of liquid-liquid systems in mixed tanks. Chemical Engineering Communications, 2003, 190, 1468-1484.	1.5	7
98	Vaporâ^'Liquid Equilibrium for 1-Butene + Methanol, + 1-Propanol, + 2-Propanol, + 2-Butanol, and 2-Methyl-2-propanol (TBA) at 364.5 K. Journal of Chemical & Engineering Data, 2008, 53, 1829-1835.	1.0	7
99	Vapour–liquid equilibrium for the systems diethyl sulphide+1-butene, +cis-2-butene, +2-methylpropane, +2-methylpropene, +n-butane, +trans-2-butene. Fluid Phase Equilibria, 2010, 291, 180-187.	1.4	7
100	Isothermal Binary Vaporâ^'Liquid Equilibrium for 2-Methylpropane and n-Butane with 1,2-Ethanedithiol and 2-Methyl-2-propanethiol. Journal of Chemical & Engineering Data, 2010, 55, 291-296.	1.0	7
101	A novel continuous flow apparatus with a video camera system for high pressure phase equilibrium measurements. Fluid Phase Equilibria, 2013, 356, 291-300.	1.4	7
102	Toward solvent screening in the extractive desulfurization using ionic liquids: QSPR modeling and experimental validations. Fuel, 2021, 302, 121159.	3.4	7
103	A cellular automata model for liquid distribution in trickle bed reactors. Chemical Engineering Science, 2006, 61, 4930-4943.	1.9	6
104	Vapor–Liquid Equilibrium for the Systems <i>trans</i> -2-Butene + Methanol, + 1-Propanol, + 2-Propanol, + 2-Butanol, and + 2-Methyl-2-propanol at 364.5 K. Journal of Chemical & Engineering Data, 2008, 53, 607-612.	1.0	6
105	Vaporâ^Liquid Equilibrium for Tetrahydrothiophene + <i>n</i> Butane, + <i>trans</i> -2-Butene, + 2-Methylpropane, and + 2-Methylpropene. Journal of Chemical & Engineering Data, 2009, 54, 1311-1317.	1.0	6
106	Phase equilibrium measurements for systems containing propanenitrile with tert-butyl ethyl ether and C4-hydrocarbons. Fluid Phase Equilibria, 2010, 299, 148-160.	1.4	6
107	Phase equilibria for systems containing dimethyl disulfide and diethyl disulfide with hydrocarbons at 368.15K. Fluid Phase Equilibria, 2010, 293, 175-181.	1.4	6
108	Three-Phase CFD-Model for Trickle Bed Reactors. International Journal of Nonlinear Sciences and Numerical Simulation, 2012, 13, .	0.4	6

#	Article	IF	CITATIONS
109	Moment based weighted residual method—New numerical tool for a nonlinear multicomponent chromatographic general rate model. Computers and Chemical Engineering, 2013, 53, 153-163.	2.0	6
110	Vapor–Liquid Equilibrium, Excess Molar Enthalpies, and Excess Molar Volumes of Binary Mixtures Containing 2-Ethoxy-2-methylpropane or 2-Ethoxy-2-methylbutane and Acetonitrile or Propanenitrile. Journal of Chemical & Engineering Data, 2013, 58, 943-950.	1.0	6
111	Physicochemical Modeling for Hot Water Extraction of Birch Wood. Industrial & Engineering Chemistry Research, 2016, 55, 11062-11073.	1.8	6
112	Design of Equilibrium Cells for Phase Equilibria and <i>PVT</i> Measurements in Large Ranges of Temperatures and Pressures. I. Vapor–Liquid–Liquid Equilibria. Journal of Chemical & Engineering Data, 2016, 61, 2700-2711.	1.0	6
113	A high-order moment-conserving method of classes (HMMC) based population balance model for mechanical flotation cells. Minerals Engineering, 2017, 108, 36-52.	1.8	6
114	Physicochemical Modeling for Pressurized Hot Water Extraction of Spruce Wood. Industrial & Engineering Chemistry Research, 2018, 57, 16664-16674.	1.8	6
115	Isobaric Vapor–Liquid Equilibrium of Furfural + γ-Valerolactone at 30 kPa and Isothermal Liquid–Liquid Equilibrium of Carbon Dioxide + γ-Valerolactone + Water at 298 K. Journal of Chemical & Engineering Data, 0, , .	1.0	6
116	<i>110th Anniversary:</i> Critical Properties and High Temperature Vapor Pressures for Furan, 2-Methylfuran, 2-Methoxy-2-methylpropane, 2-Ethoxy-2-methylbutane, <i>n</i> -Hexane, and Ethanol and Bubble Points of Mixtures with a New Apparatus. Industrial & Engineering Chemistry Research, 2019, 58, 22350-22362.	1.8	6
117	Approximating Catalyst Effectiveness Factors with Reaction Rate Profiles. Catalysts, 2019, 9, 255.	1.6	6
118	Vaporâ~Liquid Equilibrium for the cis-2-Butene + Methanol, + 2-Propanol, + 2-Butanol, + 2-Methyl-2-propanol Systems at 364.5 K. Journal of Chemical & Engineering Data, 2008, 53, 1539-1544.	1.0	5
119	The use of microplants in process development—Case study of etherification of 2-ethoxy-2-methylbutane. Chemical Engineering and Processing: Process Intensification, 2013, 74, 75-82.	1.8	5
120	Modeling of Mass Transfer and Reactions in Anisotropic Biomass Particles with Reduced Computational Load. Industrial & Engineering Chemistry Research, 2014, 53, 4096-4103.	1.8	5
121	Measurement of activity coefficient at infinite dilution for some bio-oil components in water and mass transfer study of bubbles in the dilutor. Fluid Phase Equilibria, 2015, 392, 1-11.	1.4	5
122	A comprehensive study of CO 2 solubility in aqueous 2-HEAA and MEA + 2-HEAA solutions – Measurements and modeling. International Journal of Greenhouse Gas Control, 2015, 42, 296-306.	2.3	5
123	Temperature and Pressure Dependence of Density of a Shale Oil and Derived Thermodynamic Properties. Industrial & Engineering Chemistry Research, 2018, 57, 5128-5135.	1.8	5
124	Modeling surfactant and drop size dynamics in polydisperse liquid-liquid systems with population balances. Chemical Engineering Science, 2022, 248, 117269.	1.9	5
125	Liquid – liquid equilibria in binary and ternary systems of phenolÂ+Âhydrocarbons (n–dodecane or) Tj ETQq1 between 298K and 353K. Fluid Phase Equilibria, 2022, 556, 113402.	1 0.7843 1.4	14 rgBT /Ov∈ 5
126	Vaporâ^'Liquid Equilibrium for 1-Butanol + 1-Butene at (318.4 and 364.5) K and Vaporâ^'Liquid Equilibrium of 1-Butanol + 2-Methylpropane, + <i>n</i> -Butane and 1-Butene + 2-Methylpropane at 318.4 K. Journal of Chemical & Engineering Data, 2008, 53, 2454-2461.	1.0	4

#	Article	IF	CITATIONS
127	Chlorate Formation in Chlorine Dioxide Delignification—An Analysis via Elementary Kinetic Modeling. Journal of Wood Chemistry and Technology, 2009, 29, 191-213.	0.9	4
128	Vapor–liquid equilibrium for the binary systems tetrahydrothiophene+toluene and tetrahydrothiophene+o-xylene at 368.15K and 383.15K. Fluid Phase Equilibria, 2010, 296, 4-8.	1.4	4
129	Infinite dilution activity coefficient and vapour liquid equilibrium measurements for dimethylsulphide and tetrahydrothiophene with hydrocarbons. Fluid Phase Equilibria, 2010, 295, 17-25.	1.4	4
130	Vaporâ^'Liquid Equilibrium for Thiophene + Butane, +trans-But-2-ene, + 2-Methylpropane, and + 2-Methylpropene. Journal of Chemical & Engineering Data, 2011, 56, 614-621.	1.0	4
131	A new moment analysis method to estimate the characteristic parameters in chromatographic general rate model. Computers and Chemical Engineering, 2013, 55, 50-60.	2.0	4
132	Quaternary, Ternary and Binary LLE Measurements for 2-Methoxy-2-methylbutane + Furfural + Acetic Acid + Water at Temperatures between 298 and 341 K. Journal of Chemical & Engineering Data, 2016, 61, 3730-3739.	1.0	4
133	Prototyping a calorimeter mixing cell with direct metal laser sintering. Chemical Engineering Research and Design, 2016, 108, 146-151.	2.7	4
134	Solubility of carbon monoxide in bio-oil compounds. Journal of Chemical Thermodynamics, 2017, 105, 296-311.	1.0	4
135	Densities, Viscosities, and Thermal Conductivities of the Ionic Liquid 7-Methyl-1,5,7-triazabicyclo[4.4.0]dec-5-enium Acetate and Its Mixtures with Water. International Journal of Thermophysics, 2020, 41, 1.	1.0	4
136	Volumetric Properties of Aqueous Solutions of Zinc Sulfate at Temperatures from 298.15 to 393.15 K and Pressures up to 10 MPa. Journal of Chemical & Engineering Data, 2021, 66, 45-57.	1.0	4
137	CPMAS 13C NMR Analysis of Fully Bleached Eucalypt Pulp Samples: Links to Handsheet Hygroexpansivity and Strength Properties. Journal of Applied Sciences, 2009, 9, 3991-3998.	0.1	4
138	Modeling of Catalyst Activity Profiles in Fixed-Bed Reactors with a Moment Transformation Method. Industrial & Engineering Chemistry Research, 2008, 47, 8192-8196.	1.8	3
139	Vapor–Liquid Equilibrium for the Systems 2-Methylpropane + Methanol, + 2-Propanol, + 2-Butanol, and + 2-Methyl-2-propanol at 364.5 K. Journal of Chemical & Engineering Data, 2008, 53, 913-918.	1.0	3
140	Modeling of alkaline extraction chemistry and kinetics of softwood kraft pulp. Holzforschung, 2014, 68, 733-746.	0.9	3
141	Study of CO ₂ Absorption into Phase Change Solvents MAPA and DEEA. Journal of Chemical & amp; Engineering Data, 2017, 62, 2261-2271.	1.0	3
142	Analytical time-stepping solution of the discretized population balance equation. Computers and Chemical Engineering, 2020, 135, 106741.	2.0	3
143	New model for predicting tensile strength and density of eucalyptus handsheets based on an activation parameter calculated from fiber distribution characteristics. Holzforschung, 2010, 64, .	0.9	2
144	Vapor–liquid equilibrium measurements of dimethylsulfide, +ethanol, +dimethylether, +methylacetate with a static total pressure method. Fluid Phase Equilibria, 2013, 355, 34-39.	1.4	2

#	Article	IF	CITATIONS
145	Isothermal and Isobaric Vapor–Liquid Equilibrium and Excess Molar Enthalpy of the Binary Mixtures of 2-Methoxy-2-methylpropane + 2-Methyl-2-butanol or + 2-Butanol. Journal of Chemical & Engineering Data, 2015, 60, 2655-2664.	1.0	2
146	Micro-scale piloting of a process for production of 2-methoxy-2,4,4-trimethylpentane. Chemical Engineering and Processing: Process Intensification, 2017, 122, 143-154.	1.8	2
147	Application of GalnSn Liquid Metal Alloy Replacing Mercury in a Phase Equilibrium Cell: Vapor Pressures of Toluene, Hexylbenzene, and 2-Ethylnaphthalene. Journal of Chemical & Engineering Data, 2020, 65, 3270-3276.	1.0	2
148	Hydrodeoxygenation Model Compounds γ-Heptalactone and γ-Nonalactone: Density from 293 to 473 K and H ₂ Solubility from 479 to 582 K. Journal of Chemical & Engineering Data, 2020, 65, 2764-2773.	1.0	2
149	Liquid–Liquid Equilibria for the <i>n</i> -Pentyl acetate, <i>n</i> -Hexyl acetate, <i>n</i> -Pentanol, or <i>n</i> -Hexanol + Furfural + Water Systems at 298 and 323 K. Journal of Chemical & Engineering Data, 2021, 66, 210-221.	1.0	2
150	The issue of high flux correction in multicomponent reactive and ordinary distillation. Computers and Chemical Engineering, 2002, 26, 1295-1302.	2.0	1
151	Gas-liquid and liquid-liquid system modeling using population balances for local mass transfer. Computer Aided Chemical Engineering, 2003, 14, 545-549.	0.3	1
152	CFD modelling of drag reduction effects in pipe flows. Computer Aided Chemical Engineering, 2003, 14, 737-742.	0.3	1
153	Dynamic Simulation of Continuous-Contact Separation Processes with the Moment Transformation Method. Industrial & amp; Engineering Chemistry Research, 2010, 49, 3365-3373.	1.8	1
154	The effect of fiber dimensions on fiber network activation and tensile strength. Holzforschung, 2012, 66, .	0.9	1
155	Measurements and modeling for the density of 2-methoxy-2,4,4-trimethylpentane, HE for (methanol +) Tj ETQq1 2 (water + methanol + 2-methoxy-2,4,4-trimethylpentane). Journal of Chemical Thermodynamics, 2015, 91, 313-320.	l 0.78431 1.0	4 rgBT /Ove 1
156	CFD analysis of laboratory scale phase equilibrium cell operation. Review of Scientific Instruments, 2017, 88, 105110.	0.6	1
157	Implementation aspects of modeling equilibrium reactions and thermodynamic data in a flowsheet simulator. Computer Aided Chemical Engineering, 2013, 32, 127-132.	0.3	1
158	Vapor–liquid equilibrium for binary system of tetrahydrothiophene+2,2,4-trimethylpentane and tetrahydrothiophene+2,4,4-trimethyl-1-pentene at 358.15 and 368.15K. Fluid Phase Equilibria, 2010, 296, 159-163.	1.4	0
159	6. Process intensification for microdistillation using the equipment miniaturization approach. , 2017, , 213-240.		0