Rana Abdelnabi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2285020/publications.pdf

Version: 2024-02-01

52 papers

4,311 citations

257101 24 h-index 49 g-index

74 all docs

74 docs citations

74 times ranked 6861 citing authors

#	Article	IF	CITATIONS
1	Antibody-mediated broad sarbecovirus neutralization through ACE2 molecular mimicry. Science, 2022, 375, 449-454.	6.0	108
2	Perturbation of Alphavirus and Flavivirus Infectivity by Components of the Bacterial Cell Wall. Journal of Virology, 2022, 96, jvi0006022.	1.5	3
3	The omicron (B.1.1.529) SARS-CoV-2 variant of concern does not readily infect Syrian hamsters. Antiviral Research, 2022, 198, 105253.	1.9	104
4	Ivermectin Does Not Protect against SARS-CoV-2 Infection in the Syrian Hamster Model. Microorganisms, 2022, 10, 633.	1.6	3
5	HIV protease inhibitors Nelfinavir and Lopinavir/Ritonavir markedly improve lung pathology in SARS-CoV-2-infected Syrian hamsters despite lack of an antiviral effect. Antiviral Research, 2022, 202, 105311.	1.9	8
6	The oral protease inhibitor (PF-07321332) protects Syrian hamsters against infection with SARS-CoV-2 variants of concern. Nature Communications, 2022, 13, 719.	5.8	86
7	A dual-antigen self-amplifying RNA SARS-CoV-2 vaccine induces potent humoral and cellular immune responses and protects against SARS-CoV-2 variants through TÂcell-mediated immunity. Molecular Therapy, 2022, 30, 2968-2983.	3.7	20
8	Organotropic dendrons with high potency as HIV-1, HIV-2 and EV-A71 cell entry inhibitors. European Journal of Medicinal Chemistry, 2022, 237, 114414.	2.6	1
9	ACE2-binding exposes the SARS-CoV-2 fusion peptide to broadly neutralizing coronavirus antibodies. Science, 2022, 377, 735-742.	6.0	85
10	Potent neutralizing anti-SARS-CoV-2 human antibodies cure infection with SARS-CoV-2 variants in hamster model. IScience, 2022, 25, 104705.	1.9	8
11	Repurposing Drugs for Mayaro Virus: Identification of EIDD-1931, Favipiravir and Suramin as Mayaro Virus Inhibitors. Microorganisms, 2021, 9, 734.	1.6	13
12	N-terminal domain antigenic mapping reveals a site of vulnerability for SARS-CoV-2. Cell, 2021, 184, 2332-2347.e16.	13.5	784
13	ALG-097111, a potent and selective SARS-CoV-2 3-chymotrypsin-like cysteine protease inhibitor exhibits inÂvivo efficacy in a Syrian Hamster model. Biochemical and Biophysical Research Communications, 2021, 555, 134-139.	1.0	30
14	Comparing infectivity and virulence of emerging SARS-CoV-2 variants in Syrian hamsters. EBioMedicine, 2021, 68, 103403.	2.7	102
15	Multivalent Tryptophan―and Tyrosineâ€Containing [60]Fullerene Hexaâ€Adducts as Dual HIV and Enterovirus A71 Entry Inhibitors. Chemistry - A European Journal, 2021, 27, 10700-10710.	1.7	9
16	Molnupiravir Inhibits Replication of the Emerging SARS-CoV-2 Variants of Concern in a Hamster Infection Model. Journal of Infectious Diseases, 2021, 224, 749-753.	1.9	95
17	Double Arylation of the Indole Side Chain of Tri- and Tetrapodal Tryptophan Derivatives Renders Highly Potent HIV-1 and EV-A71 Entry Inhibitors. Journal of Medicinal Chemistry, 2021, 64, 10027-10046.	2.9	7
18	Broad sarbecovirus neutralization by a human monoclonal antibody. Nature, 2021, 597, 103-108.	13.7	220

#	Article	IF	CITATIONS
19	SARS-CoV-2 RBD antibodies that maximize breadth and resistance to escape. Nature, 2021, 597, 97-102.	13.7	385
20	A highly potent antibody effective against SARS-CoV-2 variants of concern. Cell Reports, 2021, 37, 109814.	2.9	39
21	Broad betacoronavirus neutralization by a stem helix–specific human antibody. Science, 2021, 373, 1109-1116.	6.0	262
22	The combined treatment of Molnupiravir and Favipiravir results in a potentiation of antiviral efficacy in a SARS-CoV-2 hamster infection model. EBioMedicine, 2021, 72, 103595.	2.7	91
23	An affinity-enhanced, broadly neutralizing heavy chain–only antibody protects against SARS-CoV-2 infection in animal models. Science Translational Medicine, 2021, 13, eabi7826.	5. 8	41
24	Antiviral drug discovery against arthritogenic alphaviruses: Tools and molecular targets. Biochemical Pharmacology, 2020, 174, 113777.	2.0	14
25	Scaffold Simplification Strategy Leads to a Novel Generation of Dual Human Immunodeficiency Virus and Enterovirus-A71 Entry Inhibitors. Journal of Medicinal Chemistry, 2020, 63, 349-368.	2.9	20
26	Favipiravir at high doses has potent antiviral activity in SARS-CoV-2â^'infected hamsters, whereas hydroxychloroquine lacks activity. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 26955-26965.	3.3	240
27	Ultrapotent human antibodies protect against SARS-CoV-2 challenge via multiple mechanisms. Science, 2020, 370, 950-957.	6.0	504
28	Antiviral Strategies against Arthritogenic Alphaviruses. Microorganisms, 2020, 8, 1365.	1.6	12
29	Understanding the Mechanisms Underlying Host Restriction of Insect-Specific Viruses. Viruses, 2020, 12, 964.	1.5	15
30	Novel Class of Chikungunya Virus Small Molecule Inhibitors That Targets the Viral Capping Machinery. Antimicrobial Agents and Chemotherapy, 2020, 64, .	1.4	15
31	Identification of 2-(4-(Phenylsulfonyl)piperazine-1-yl)pyrimidine Analogues as Novel Inhibitors of Chikungunya Virus. ACS Medicinal Chemistry Letters, 2020, 11, 906-912.	1.3	16
32	Pan-viral protection against arboviruses by activating skin macrophages at the inoculation site. Science Translational Medicine, 2020, 12, .	5 . 8	25
33	A novel druggable interprotomer pocket in the capsid of rhino- and enteroviruses. PLoS Biology, 2019, 17, e3000281.	2.6	36
34	Chikungunya virus resistant to the antiviral favipiravir is severely attenuated in mosquitoes. Access Microbiology, 2019, 1 , .	0.2	0
35	A novel class of small molecule inhibitors targeting the chikungunya virus capping machinery with a high barrier to resistance. Access Microbiology, 2019, 1 , .	0.2	0
36	Pan-antivirals to combat re-emerging alphaviruses. Access Microbiology, 2019, 1, .	0.2	0

3

#	Article	IF	CITATIONS
37	Inhibition of the Replication of Different Strains of Chikungunya Virus by 3-Aryl-[1,2,3]triazolo[4,5- <i>d</i>)pyrimidin-7(6 <i>H</i>)-ones. ACS Infectious Diseases, 2018, 4, 605-619.	1.8	18
38	Favipiravir as a potential countermeasure against neglected and emerging RNA viruses. Antiviral Research, 2018, 153, 85-94.	1.9	295
39	Antiviral treatment efficiently inhibits chikungunya virus infection in the joints of mice during the acute but not during the chronic phase of the infection. Antiviral Research, 2018, 149, 113-117.	1.9	30
40	Glutathione is a highly efficient thermostabilizer of poliovirus Sabin strains. Vaccine, 2017, 35, 1370-1372.	1.7	8
41	Chikungunya virus infections: time to act, time to treat. Current Opinion in Virology, 2017, 24, 25-30.	2.6	39
42	Understanding the Mechanism of the Broad-Spectrum Antiviral Activity of Favipiravir (T-705): Key Role of the F1 Motif of the Viral Polymerase. Journal of Virology, 2017, 91, .	1.5	62
43	Protein kinases C as potential host targets for the inhibition of chikungunya virus replication. Antiviral Research, 2017, 139, 79-87.	1.9	20
44	New class of early-stage enterovirus inhibitors with a novel mechanism of action. Antiviral Research, 2017, 147, 67-74.	1.9	14
45	Discovery of novel multi-target indole-based derivatives as potent and selective inhibitors of chikungunya virus replication. Bioorganic and Medicinal Chemistry, 2017, 25, 327-337.	1.4	34
46	In silico development of a novel putative inhibitor of the 3C protease of Coxsackievirus B3 with a benzene sulfonamide skeleton. Journal of Pharmaceutical Chemistry, 2017, 4, 25-34.	0.2	1
47	Comparative analysis of the anti-chikungunya virus activity of novel bryostatin analogs confirms the existence of a PKC-independent mechanism. Biochemical Pharmacology, 2016, 120, 15-21.	2.0	11
48	Antiviral Strategies Against Chikungunya Virus. Methods in Molecular Biology, 2016, 1426, 243-253.	0.4	24
49	Simplified Bryostatin Analogues Protect Cells from Chikungunya Virus-Induced Cell Death. Journal of Natural Products, 2016, 79, 675-679.	1.5	16
50	Inhibition of Chikungunya Virus-Induced Cell Death by Salicylate-Derived Bryostatin Analogues Provides Additional Evidence for a PKC-Independent Pathway. Journal of Natural Products, 2016, 79, 680-684.	1.5	28
51	Towards antivirals against chikungunya virus. Antiviral Research, 2015, 121, 59-68.	1.9	84
52	Characterization of a panel of monoclonal antibodies toward mouse PAI-1 that exert a significant profibrinolytic effect in vivo. Thrombosis Research, 2011, 128, 68-76.	0.8	15