Joseph F Ryan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/228498/publications.pdf

Version: 2024-02-01

61 papers

4,217 citations

147786 31 h-index 60 g-index

84 all docs 84 docs citations

84 times ranked 5244 citing authors

#	Article	IF	CITATIONS
1	The Genome of the Ctenophore <i>Mnemiopsis leidyi</i> and Its Implications for Cell Type Evolution. Science, 2013, 342, 1242592.	12.6	570
2	Genomic evidence for ameiotic evolution in the bdelloid rotifer Adineta vaga. Nature, 2013, 500, 453-457.	27.8	352
3	The mid-developmental transition and the evolution of animal body plans. Nature, 2016, 531, 637-641.	27.8	231
4	Pre-Bilaterian Origins of the Hox Cluster and the Hox Code: Evidence from the Sea Anemone, Nematostella vectensis. PLoS ONE, 2007, 2, e153.	2.5	198
5	Rising starlet: the starlet sea anemone, Nematostella vectensis. BioEssays, 2005, 27, 211-221.	2.5	189
6	Phylogenomics provides a robust topology of the major cnidarian lineages and insights on the origins of key organismal traits. BMC Evolutionary Biology, $2018, 18, \ldots$	3.2	182
7	The Breast Cancer Information Core: Database design, structure, and scope. Human Mutation, 2000, 16, 123-131.	2.5	174
8	The cnidarian-bilaterian ancestor possessed at least 56 homeoboxes: evidence from the starlet sea anemone, Nematostella vectensis. Genome Biology, 2006, 7, R64.	9.6	162
9	The homeodomain complement of the ctenophore Mnemiopsis leidyi suggests that Ctenophora and Porifera diverged prior to the ParaHoxozoa. EvoDevo, 2010, 1, 9.	3.2	133
10	Genomic organization, evolution, and expression of photoprotein and opsin genes in Mnemiopsis leidyi: a new view of ctenophore photocytes. BMC Biology, 2012, 10, 107.	3.8	107
11	StellaBase: The Nematostella vectensis Genomics Database. Nucleic Acids Research, 2006, 34, D495-D499.	14.5	101
12	Genomic insights into Wnt signaling in an early diverging metazoan, the ctenophore Mnemiopsis leidyi. EvoDevo, 2010, 1, 10.	3.2	100
13	The Global Invertebrate Genomics Alliance (GIGA): Developing Community Resources to Study Diverse Invertebrate Genomes. Journal of Heredity, 2014, 105, 1-18.	2.4	96
14	Evolution of the TGF- \hat{l}^2 Signaling Pathway and Its Potential Role in the Ctenophore, Mnemiopsis leidyi. PLoS ONE, 2011, 6, e24152.	2.5	85
15	Extreme mitochondrial evolution in the ctenophore <i>Mnemiopsis leidyi</i> the nuclear genome. Mitochondrial DNA, 2011, 22, 130-142.	0.6	81
16	Genetic Analysis of Hematological Parameters in Incipient Lines of the Collaborative Cross. G3: Genes, Genomes, Genetics, 2012, 2, 157-165.	1.8	80
17	Tracing animal genomic evolution with the chromosomal-level assembly of the freshwater sponge Ephydatia muelleri. Nature Communications, 2020, 11, 3676.	12.8	72
18	Parallel Construction of Orthologous Sequence-Ready Clone Contig Maps in Multiple Species. Genome Research, 2002, 12, 1277-1285.	5.5	62

#	Article	IF	CITATIONS
19	Do novel genes drive morphological novelty? An investigation of the nematosomes in the sea anemone Nematostella vectensis. BMC Evolutionary Biology, 2016, 16, 114.	3.2	56
20	Box, stalked, and upside-down? Draft genomes from diverse jellyfish (Cnidaria, Acraspeda) lineages: Alatina alata (Cubozoa), Calvadosia cruxmelitensis (Staurozoa), and Cassiopea xamachana (Scyphozoa). GigaScience, 2019, 8, .	6.4	53
21	Did the ctenophore nervous system evolve independently?. Zoology, 2014, 117, 225-226.	1.2	52
22	Where is my mind? How sponges and placozoans may have lost neural cell types. Philosophical Transactions of the Royal Society B: Biological Sciences, 2015, 370, 20150059.	4.0	52
23	The Diversification of the LIM Superclass at the Base of the Metazoa Increased Subcellular Complexity and Promoted Multicellular Specialization. PLoS ONE, 2012, 7, e33261.	2.5	50
24	Opsin Repertoire and Expression Patterns in Horseshoe Crabs: Evidence from the Genome of <i>Limulus polyphemus </i> (Arthropoda: Chelicerata). Genome Biology and Evolution, 2016, 8, 1571-1589.	2.5	50
25	Hox, Wnt, and the evolution of the primary body axis: insights from the early-divergent phyla. Biology Direct, 2007, 2, 37.	4.6	48
26	The evolution of animal genomes. Current Opinion in Genetics and Development, 2015, 35, 25-32.	3.3	48
27	Timing and Scope of Genomic Expansion within Annelida: Evidence from Homeoboxes in the Genome of the Earthworm <i>Eisenia fetida</i> . Genome Biology and Evolution, 2016, 8, 271-281.	2.5	45
28	MicroRNAs and essential components of the microRNA processing machinery are not encoded in the genome of the ctenophore Mnemiopsis leidyi. BMC Genomics, 2012, 13, 714.	2.8	43
29	Coral Comparative Genomics Reveal Expanded Hox Cluster in the Cnidarian-Bilaterian Ancestor. Integrative and Comparative Biology, 2012, 52, 835-841.	2.0	40
30	Automation and Evaluation of the SOWH Test with SOWHAT. Systematic Biology, 2015, 64, 1048-1058.	5.6	40
31	Increased taxon sampling reveals thousands of hidden orthologs in flatworms. Genome Research, 2017, 27, 1263-1272.	5.5	39
32	Low coverage sequencing of three echinoderm genomes: the brittle star Ophionereis fasciata, the sea star Patiriella regularis, and the sea cucumber Australostichopus mollis. GigaScience, 2016, 5, 20.	6.4	33
33	Nuclear receptors from the ctenophore Mnemiopsis leidyi lack a zinc-finger DNA-binding domain: lineage-specific loss or ancestral condition in the emergence of the nuclear receptor superfamily?. EvoDevo, 2011, 2, 3.	3.2	32
34	A new transcriptome and transcriptome profiling of adult and larval tissue in the box jellyfish Alatina alata: an emerging model for studying venom, vision and sex. BMC Genomics, 2016, 17, 650.	2.8	31
35	Six-State Amino Acid Recoding is not an Effective Strategy to Offset Compositional Heterogeneity and Saturation in Phylogenetic Analyses. Systematic Biology, 2021, 70, 1200-1212.	5.6	31
36	ANISEED 2019: 4D exploration of genetic data for an extended range of tunicates. Nucleic Acids Research, 2020, 48, D668-D675.	14.5	30

#	Article	IF	CITATIONS
37	Integrating embryonic development and evolutionary history to characterize tentacle-specific cell types in a ctenophore. Molecular Biology and Evolution, 2018, 35, 2940-2956.	8.9	29
38	Conserved and novel Wnt clusters in the basal eumetazoan Nematostella vectensis. Development Genes and Evolution, 2007, 217, 235-239.	0.9	28
39	A customized Web portal for the genome of the ctenophore Mnemiopsis leidyi. BMC Genomics, 2014, 15, 316.	2.8	28
40	Comparative Genome Mapping in the Sequence-based Era: Early Experience with Human Chromosome 7. Genome Research, 2000, 10, 624-633.	5.5	27
41	A hybrid <i>de novo</i> assembly of the sea pansy (<i>Renilla muelleri</i>) genome. GigaScience, 2019, 8, .	6.4	27
42	"Dorsal–Ventral―Genes Are Part of an Ancient Axial Patterning System: Evidence from Trichoplax adhaerens (Placozoa). Molecular Biology and Evolution, 2019, 36, 966-973.	8.9	26
43	Genomic analysis of the tryptome reveals molecular mechanisms of gland cell evolution. EvoDevo, 2019, 10, 23.	3.2	21
44	A reconstruction of sexual modes throughout animal evolution. BMC Evolutionary Biology, 2017, 17, 242.	3.2	20
45	Phylotocol: Promoting Transparency and Overcoming Bias in Phylogenetics. Systematic Biology, 2019, 68, 672-678.	5.6	20
46	CnidBase: The Cnidarian Evolutionary Genomics Database. Nucleic Acids Research, 2003, 31, 159-163.	14.5	19
47	Insights into the Biodiversity, Behavior, and Bioluminescence of Deep-Sea Organisms Using Molecular and Maritime Technology. Oceanography, 2017, 30, 38-47.	1.0	19
48	The Mnemiopsis Genome Project Portal: integrating new gene expression resources and improving data visualization. Database: the Journal of Biological Databases and Curation, 2020, 2020, .	3.0	18
49	Lineage-specific evolution of the vertebrate Otopetringene family revealed by comparative genomic analyses. BMC Evolutionary Biology, 2011, 11, 23.	3.2	16
50	The Homeodomain Resource: a comprehensive collection of sequence, structure, interaction, genomic and functional information on the homeodomain protein family. Database: the Journal of Biological Databases and Curation, 2009, 2009, bap004-bap004.	3.0	15
51	The Homeodomain Resource: sequences, structures and genomic information. Nucleic Acids Research, 1999, 27, 336-337.	14.5	14
52	Draft Genome of the Sea Cucumber Holothuria glaberrima, a Model for the Study of Regeneration. Frontiers in Marine Science, 2021, 8, .	2.5	14
53	The sex lives of ctenophores: the influence of light, body size, and self-fertilization on the reproductive output of the sea walnut, <i>Mnemiopsis leidyi</i> . PeerJ, 2016, 4, e1846.	2.0	14
54	Inferring Tunicate Relationships and the Evolution of the Tunicate Hox Cluster with the Genome of Corella inflata. Genome Biology and Evolution, 2020, 12, 948-964.	2.5	12

#	Article	IF	CITATIONS
55	A novel regulatory gene promotes novel cell fate by suppressing ancestral fate in the sea anemone <i>Nematostella vectensis</i> . Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, e2113701119.	7.1	12
56	Sponges Lack ParaHox Genes. Genome Biology and Evolution, 2019, 11, 1250-1257.	2.5	11
57	The state of Medusozoa genomics: current evidence and future challenges. GigaScience, 2022, 11, .	6.4	8
58	The ctenophore Mnemiopsis leidyi regulates egg production via conspecific communication. BMC Ecology, 2018, 18, 12.	3.0	7
59	Horizontally transferred genes in the ctenophore <i>Mnemiopsis leidyi </i> li>. PeerJ, 2018, 6, e5067.	2.0	7
60	Meeting report of Ctenopalooza: the first international meeting of ctenophorologists. EvoDevo, 2016, 7, .	3.2	1
61	Regeneration of Planarian Auricles and Reestablishment of Chemotactic Ability. Frontiers in Cell and Developmental Biology, 2021, 9, 777951.	3.7	1