
## Nuo Zhang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2284883/publications.pdf Version: 2024-02-01



Νυο Ζηλης

| #  | Article                                                                                                                                                                                                                                                                    | IF   | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Ultrasensitive photoelectrochemical immunosensor for the detection of amyloid $\hat{l}^2$ -protein based on SnO2/SnS2/Ag2S nanocomposites. Biosensors and Bioelectronics, 2018, 120, 1-7.                                                                                  | 10.1 | 77        |
| 2  | Bioactivity-Protected Electrochemiluminescence Biosensor Using Gold Nanoclusters as the<br>Low-Potential Luminophor and Cu <sub>2</sub> S Snowflake as Co-reaction Accelerator for<br>Procalcitonin Analysis. ACS Sensors, 2019, 4, 1909-1916.                             | 7.8  | 65        |
| 3  | Double electrochemiluminescence quenching effects of Fe3O4@PDA-CuXO towards self-enhanced Ru(bpy)32+ functionalized MOFs with hollow structure and it application to procalcitonin immunosensing. Biosensors and Bioelectronics, 2019, 142, 111521.                        | 10.1 | 50        |
| 4  | Label-free electrochemical immunosensor based on biocompatible nanoporous<br>Fe <sub>3</sub> O <sub>4</sub> and biotin–streptavidin system for sensitive detection of zearalenone.<br>Analyst, The, 2020, 145, 1368-1375.                                                  | 3.5  | 50        |
| 5  | A dual-mode PCT electrochemical immunosensor with CuCo2S4 bimetallic sulfides as enhancer.<br>Biosensors and Bioelectronics, 2020, 163, 112280.                                                                                                                            | 10.1 | 47        |
| 6  | Electrochemiluminescence Double Quenching System Based on Novel Emitter GdPO <sub>4</sub> :Eu<br>with Low-Excited Positive Potential for Ultrasensitive Procalcitonin Detection. ACS Sensors, 2019, 4,<br>2825-2831.                                                       | 7.8  | 44        |
| 7  | Cobalt-based metal-organic frameworks as co-reaction accelerator for enhancing<br>electrochemiluminescence behavior of N-(aminobutyl)-N-(ethylisoluminol) and ultrasensitive<br>immunosensing of amyloid-β protein. Sensors and Actuators B: Chemical, 2019, 291, 319-328. | 7.8  | 42        |
| 8  | Ultrasensitive amyloid-β proteins detection based on curcumin conjugated ZnO nanoparticles<br>quenching electrochemiluminescence behavior of luminol immobilized on Au@MoS2/Bi2S3 nanorods.<br>Biosensors and Bioelectronics, 2019, 131, 136-142.                          | 10.1 | 42        |
| 9  | Highly-branched Cu2O as well-ordered co-reaction accelerator for amplifying<br>electrochemiluminescence response of gold nanoclusters and procalcitonin analysis based on<br>protein bioactivity maintenance. Biosensors and Bioelectronics, 2019, 144, 111676.            | 10.1 | 29        |
| 10 | Rational design of bimetallic Rh <sub>0.6</sub> Ru <sub>0.4</sub> nanoalloys for enhanced nitrogen reduction electrocatalysis under mild conditions. Journal of Materials Chemistry A, 2021, 9, 259-263.                                                                   | 10.3 | 25        |
| 11 | Enhancing Electrochemiluminescence Efficiency through Introducing Atomically Dispersed<br>Ruthenium in Nickel-Based Metal–Organic Frameworks. Analytical Chemistry, 2022, 94, 10557-10566.                                                                                 | 6.5  | 24        |
| 12 | PEGylation Improved Electrochemiluminescence Supramolecular Assembly of Iridium(III) Complexes in<br>Apoferritin for Immunoassays Using 2D/2D MXene/TiO <sub>2</sub> Hybrids as Signal Amplifiers.<br>Analytical Chemistry, 2021, 93, 16906-16914.                         | 6.5  | 23        |
| 13 | A photoelectrochemical immunosensor based on CdS/CdTe-cosensitized SnO <sub>2</sub> as a platform for the ultrasensitive detection of amyloid β-protein. Analyst, The, 2020, 145, 619-625.                                                                                 | 3.5  | 19        |
| 14 | Bifunctional pd-decorated polysulfide nanoparticle of Co9S8 supported on graphene oxide: A new and efficient label-free immunosensor for amyloid β-protein detection. Sensors and Actuators B: Chemical, 2020, 304, 127413.                                                | 7.8  | 18        |
| 15 | Magnetic electrode-based electrochemical immunosensor using amorphous bimetallic sulfides of<br>CoSnSx as signal amplifier for the NT pro BNP detection. Biosensors and Bioelectronics, 2019, 131,<br>250-256.                                                             | 10.1 | 17        |
| 16 | Nanoarrays-propped in situ photoelectrochemical system for microRNA detection. Biosensors and Bioelectronics, 2022, 210, 114291.                                                                                                                                           | 10.1 | 16        |
| 17 | Interface engineering of MoS2@Fe(OH)3 nanoarray heterostucture: Electrodeposition of<br>MoS2@Fe(OH)3 as N2 and H+ channels for artificial NH3 synthesis under mild conditions. Journal of<br>Colloid and Interface Science, 2022, 606, 1374-1379.                          | 9.4  | 15        |
| 18 | Microfluidic Ratiometric Photoelectrochemical Biosensor Using a Magnetic Field on a Photochromic<br>Composite Platform: A Proof-of-Concept Study for Magnetic-Photoelectrochemical Bioanalysis.<br>Analytical Chemistry, 2021, 93, 13680-13686.                            | 6.5  | 14        |

Nuo Zhang

| #  | Article                                                                                                                                                                                                                                                                                | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | A cardiac troponin I photoelectrochemical immunosensor: nitrogen-doped carbon quantum<br>dots–bismuth oxyiodide–flower-like SnO2. Mikrochimica Acta, 2020, 187, 332.                                                                                                                   | 5.0 | 13        |
| 20 | A procalcitonin photoelectrochemical immunosensor: NCQDs and Sb <sub>2</sub> S <sub>3</sub><br>co-sensitized hydrangea-shaped WO <sub>3</sub> as a matrix through a layer-by-layer assembly. New<br>Journal of Chemistry, 2020, 44, 2452-2458.                                         | 2.8 | 10        |
| 21 | A photoelectrochemical aptasensor for the detection of 17β-estradiol based on<br>In <sub>2</sub> S <sub>3</sub> and CdS co-sensitized cerium doped TiO <sub>2</sub> . New Journal of<br>Chemistry, 2020, 44, 346-353.                                                                  | 2.8 | 4         |
| 22 | Meso-Tetra-(3,5-Dibromo-4-Hydroxydroxyphenyl) Porphyrin Copper (II) Self-Assembled Modified Gold<br>Electrode Through I-Cysteine: The Preparation, Electrochemical Behavior and its Application. Journal<br>of Inorganic and Organometallic Polymers and Materials, 2011, 21, 871-875. | 3.7 | 3         |
| 23 | Self-Aggregation Behavior of <i>meso</i> -Tetra-(4-trimethylaminophenyl)porphyrin Encapsulated in<br>Reverse Micelles. Spectroscopy Letters, 2010, 43, 275-281.                                                                                                                        | 1.0 | 1         |