
Long Chen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/228469/publications.pdf Version: 2024-02-01

LONG CHEN

#	Article	IF	CITATIONS
1	Vibration Reduction of Reactor Using Global Magneto-Structural Topology Optimization. IEEE Transactions on Applied Superconductivity, 2022, 32, 1-5.	1.7	0
2	An improved eddy current loss model over broadband frequency range. AIP Advances, 2022, 12, .	1.3	1
3	Accurate small major hysteresis loops calculation by the Preisach model with improved parametric distribution function. AIP Advances, 2022, 12, 035337.	1.3	1
4	Dynamic Magnetic Hysteresis Modeling Based on Improved Parametric Magneto-Dynamic Model. IEEE Transactions on Applied Superconductivity, 2022, 32, 1-5.	1.7	6
5	The Vector Electromagnetic Vibration of Magnetically Controlled Reactor Considering the Vector Hysteretic Magnetostriction Effect. IEEE Transactions on Magnetics, 2022, 58, 1-5.	2.1	2
6	An improved magnetostriction model of silicon steel considering the saturated magnetic domain wall movement. AIP Advances, 2021, 11, .	1.3	8
7	Core loss analysis of soft magnetic composites considering the inter-particle eddy current loss. AIP Advances, 2021, 11, 015140.	1.3	7
8	Parameter identification of Preisach model based on velocity-controlled particle swarm optimization method. AIP Advances, 2021, 11, .	1.3	11
9	Electromagnetic Vibration Analysis of Magnetically Controlled Reactor Considering DC Magnetic Flux. IEEE Access, 2020, 8, 170271-170280.	4.2	4
10	Characterization of magnetic properties of nanocrystalline alloys under rotational magnetization. AIP Advances, 2019, 9, 035316.	1.3	4
11	Design and Optimization of High Frequency Transformer with Nanocrystalline Core. , 2019, , .		4
12	Performance Evaluation of an Axial Flux Claw Pole Machine With Soft Magnetic Composite Cores. IEEE Transactions on Applied Superconductivity, 2018, 28, 1-5.	1.7	9
13	Waveform Conditioning Problems of Nanocrystalline Alloys Under One/Two-Dimensional High-Frequency Magnetization. IEEE Transactions on Applied Superconductivity, 2018, 28, 1-5.	1.7	7
14	A New Magnetizer for Measuring the Two-Dimensional Magnetic Properties of Nanocrystalline Alloys at High Frequencies. IEEE Magnetics Letters, 2017, 8, 1-5.	1.1	12
15	Measurement of rotational magnetic properties of nanocrystalline alloys by a modified B-H sensor. AIP Advances, 2017, 7, .	1.3	1
16	Measurement of magnetic properties of soft magnetic composite materials at high frequencies and high flux densities. , 2017, , .		1
17	Shielding effectiveness analysis in a two-dimensional magnetic measurement system. , 2016, , .		0