Juan Zhou

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2284562/publications.pdf Version: 2024-02-01

Ιμαν Ζησιι

#	Article	IF	CITATIONS
1	Glycosaminoglycans immobilized core-shell gold mesoporous silica nanoparticles for synergetic chemo-photothermal therapy of cancer cells. Materials Letters, 2022, 308, 131113.	2.6	3
2	â€~Yan Ya': A New Cultivar of Xanthoceras sorbifolium Bunge. Hortscience: A Publication of the American Society for Hortcultural Science, 2022, 57, 326-327.	1.0	2
3	â€~Yan Zi': A Novel Cultivar of Xanthoceras sorbifolium Bunge. Hortscience: A Publication of the American Society for Hortcultural Science, 2022, 57, 487-488.	1.0	0
4	Multifunctional Human Serum Albumin Fusion Protein as a Docetaxel Nanocarrier for Chemo-photothermal Synergetic Therapy of Ovarian Cancer. ACS Applied Materials & Interfaces, 2022, 14, 19907-19917.	8.0	6
5	Novel Cultivar of Xanthoceras sorbifolium Bunge †Yan Liu'. Hortscience: A Publication of the American Society for Hortcultural Science, 2022, 57, 827-828.	1.0	1
6	Long-term antiplatelet therapy in medically managed non-ST-segment elevation acute coronary syndromes: The EPICOR Asia study. International Journal of Cardiology, 2021, 327, 19-24.	1.7	1
7	Injectable, self-healing and pH responsive stem cell factor loaded collagen hydrogel as a dynamic bioadhesive dressing for diabetic wound repair. Journal of Materials Chemistry B, 2021, 9, 5887-5897.	5.8	33
8	Multifunctionalized Brush-Like Glycopolymers with High Affinity to P-Selectin and Antitumor Metastasis Activity. Biomacromolecules, 2021, 22, 1177-1185.	5.4	5
9	Nanostructured Phase Morphology of a Biobased Copolymer for Tough and UV-Resistant Polylactide. ACS Applied Polymer Materials, 2021, 3, 1973-1982.	4.4	27
10	Enzyme Catalyzed Hydrogel as Versatile Bioadhesive for Tissue Wound Hemostasis, Bonding, and Continuous Repair. Biomacromolecules, 2021, 22, 1346-1356.	5.4	38
11	Meta-Analysis Comparing the Effect of Combined Omega-3 + Statin Therapy Versus Statin Therapy Alone on Coronary Artery Plaques. American Journal of Cardiology, 2021, 151, 15-24.	1.6	6
12	Injectable and self-healing hydrogel containing nitric oxide donor for enhanced antibacterial activity. Reactive and Functional Polymers, 2021, 166, 105003.	4.1	9
13	Fabrication of pH/Reduction Sensitive Polyethylene Glycol-Based Micelles for Enhanced Intracellular Drug Release. Pharmaceutics, 2021, 13, 1464.	4.5	4
14	Glycogen as a Cross-Linking Agent of Collagen and Nanohydroxyapatite To Form Hydrogels for bMSC Differentiation. ACS Sustainable Chemistry and Engineering, 2020, 8, 2106-2114.	6.7	17
15	pH-Sensitive tumor-targeted hyperbranched system based on glycogen nanoparticles for liver cancer therapy. Applied Materials Today, 2020, 18, 100521.	4.3	19
16	Multistage-Targeted Gold/Mesoporous Silica Nanocomposite Hydrogel as In Situ Injectable Drug Release System for Chemophotothermal Synergistic Cancer Therapy. ACS Applied Bio Materials, 2020, 3, 421-431.	4.6	26
17	Bioengineered Human Serum Albumin Fusion Protein as Target/Enzyme/pH Three-Stage Propulsive Drug Vehicle for Tumor Therapy. ACS Nano, 2020, 14, 17405-17418.	14.6	31
18	Fineâ€mapping of <i>ZDHHC2</i> identifies risk variants for schizophrenia in the Han Chinese population. Molecular Genetics & Genomic Medicine, 2020, 8, e1190.	1.2	7

Juan Zhou

#	Article	IF	CITATIONS
19	Phospholipid-Decorated Glycogen Nanoparticles for Stimuli-Responsive Drug Release and Synergetic Chemophotothermal Therapy of Hepatocellular Carcinoma. ACS Applied Materials & Interfaces, 2020, 12, 23311-23322.	8.0	25
20	A versatile catalyst-free perfluoroaryl azide–aldehyde–amine conjugation reaction. Materials Chemistry Frontiers, 2019, 3, 251-256.	5.9	14
21	Relation of Direct, Indirect, and Total bilirubin to Adverse Long-term Outcomes Among Patients With Acute Coronary Syndrome. American Journal of Cardiology, 2019, 123, 1244-1248.	1.6	15
22	In situ formed collagen-hyaluronic acid hydrogel as biomimetic dressing for promoting spontaneous wound healing. Materials Science and Engineering C, 2019, 101, 487-498.	7.3	173
23	<p>Enzyme-responsive mesoporous silica nanoparticles for tumor cells and mitochondria multistage-targeted drug delivery</p> . International Journal of Nanomedicine, 2019, Volume 14, 2533-2542.	6.7	69
24	Fabrication and characterization of collagen-heparin-polypyrrole composite conductive film for neural scaffold. International Journal of Biological Macromolecules, 2019, 129, 895-903.	7.5	17
25	Advances in Therapeutic Implications of Inorganic Drug Delivery Nano-Platforms for Cancer. International Journal of Molecular Sciences, 2019, 20, 965.	4.1	54
26	Impact of depression and/or anxiety on patients with percutaneous coronary interventions after acute coronary syndrome: a protocol for a real-world prospective cohort study. BMJ Open, 2019, 9, e027964.	1.9	8
27	Design and synthesis of a native heparin disaccharide grafted poly‑2‑aminoethyl methacrylate glycopolymer for inhibition of melanoma cell metastasis. International Journal of Biological Macromolecules, 2019, 126, 612-619.	7.5	12
28	Combination of the CYP2C19 metabolizer and the GRACE risk score better predicts the long-term major adverse cardiac events in acute coronary syndrome undergoing percutaneous coronary intervention. Thrombosis Research, 2018, 170, 142-147.	1.7	7
29	Extracellular Matrix Component Shelled Nanoparticles as Dual Enzyme-Responsive Drug Delivery Vehicles for Cancer Therapy. ACS Biomaterials Science and Engineering, 2018, 4, 2404-2411.	5.2	37
30	BN nanospheres functionalized with mesoporous silica for enhancing CpG oligodeoxynucleotide-mediated cancer immunotherapy. Nanoscale, 2018, 10, 14516-14524.	5.6	25
31	Silver nanoparticles-doped collagen–alginate antimicrobial biocomposite as potential wound dressing. Journal of Materials Science, 2018, 53, 14944-14952.	3.7	59
32	Dual layer collagen-GAG conduit that mimic vascular scaffold and promote blood vessel cells adhesion, proliferation and elongation. Materials Science and Engineering C, 2018, 92, 447-452.	7.3	20
33	Catalyst-Free Cycloaddition Reaction for the Synthesis of Glyconanoparticles. ACS Applied Materials & Interfaces, 2016, 8, 28136-28142.	8.0	7
34	Significant association of GRM7 and GRM8 genes with schizophrenia and major depressive disorder in the Han Chinese population. European Neuropsychopharmacology, 2016, 26, 136-146.	0.7	35
35	Liquid Quantum Dots Constructed by Host–Guest Interaction. ACS Macro Letters, 2015, 4, 357-360.	4.8	8
36	Lectin-gated, mesoporous, photofunctionalized glyconanoparticles for glutathione-responsive drug delivery. Chemical Communications, 2015, 51, 9833-9836.	4.1	34

Juan Zhou

#	Article	IF	CITATIONS
37	Synthesis of Multifunctional Cellulose Nanocrystals for Lectin Recognition and Bacterial Imaging. Biomacromolecules, 2015, 16, 1426-1432.	5.4	64
38	Quantitative Fluorine NMR To Determine Carbohydrate Density on Glyconanomaterials Synthesized from Perfluorophenyl Azide-Functionalized Silica Nanoparticles by Click Reaction. Analytical Chemistry, 2015, 87, 9451-9458.	6.5	21
39	Trehalose-Conjugated, Photofunctionalized Mesoporous Silica Nanoparticles for Efficient Delivery of Isoniazid into Mycobacteria. ACS Biomaterials Science and Engineering, 2015, 1, 1250-1255.	5.2	34
40	Glycan-Functionalized Fluorescent Chitin Nanocrystals for Biorecognition Applications. Bioconjugate Chemistry, 2014, 25, 640-643.	3.6	41
41	Composite quantum dots detect Cd(<scp>ii</scp>) in living cells in a fluorescence "turning on―mode. Journal of Materials Chemistry, 2012, 22, 2507-2511.	6.7	42
42	Cyclodextrin modified quantum dots with tunable liquid-like behaviour. Chemical Communications, 2012, 48, 3596.	4.1	14
43	Selective response of antigenâ€antibody reactions on chiral surfaces modified with 1,2â€diphenylethylenediamine enantiomers. Surface and Interface Analysis, 2012, 44, 170-174.	1.8	5
44	Highly Fluorescent Fluoride-Responsive Hydrogels Embedded with CdTe Quantum Dots. ACS Applied Materials & Interfaces, 2012, 4, 721-724.	8.0	31
45	Chiral Recognition of Penicillamine Enantiomers Based on DNAâ€MWNT Complex Modified Electrode. Electroanalysis, 2012, 24, 1561-1566.	2.9	17
46	A new chiral electrochemical sensor for the enantioselective recognition of penicillamine enantiomers. Journal of Solid State Electrochemistry, 2012, 16, 2481-2485.	2.5	18
47	Enantioselective Recognition of Dopa Enantiomers in the Presence of Ascorbic Acid or Tyrosine. Electroanalysis, 2012, 24, 332-337.	2.9	20
48	Stereospecific redox reaction of ascorbic acid and isoascorbic acid based on chiral electropolymerized films. Analytical Methods, 2011, 3, 2740.	2.7	9
49	Multi-emission CdTe quantum dot nanofluids. Journal of Materials Chemistry, 2011, 21, 8521.	6.7	19
50	Stereoselective Interaction between DNA and Stable Chiral Surfaces Modified with 1,2â€Diphenylethylenediamine Enantiomers. Electroanalysis, 2011, 23, 529-535.	2.9	9
51	Recognition behavior of chiral nanocomposites toward biomolecules and its application in electrochemical immunoassay. Science China Chemistry, 2010, 53, 1453-1458.	8.2	6