
Dongdong Li

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/228405/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Semiconducting polymer-based nanoparticles with strong absorbance in NIR-II window for inÂvivo photothermal therapy and photoacoustic imaging. Biomaterials, 2018, 155, 103-111.	11.4	180
2	Tumor Acidity/NIR Controlled Interaction of Transformable Nanoparticle with Biological Systems for Cancer Therapy. Nano Letters, 2017, 17, 2871-2878.	9.1	111
3	The potentiated checkpoint blockade immunotherapy by ROS-responsive nanocarrier-mediated cascade chemo-photodynamic therapy. Biomaterials, 2019, 223, 119469.	11.4	103
4	ROS-Sensitive Polymeric Nanocarriers with Red Light-Activated Size Shrinkage for Remotely Controlled Drug Release. Chemistry of Materials, 2018, 30, 517-525.	6.7	100
5	Silver nanoparticles outperform gold nanoparticles in radiosensitizing U251 cells in vitro and in an intracranial mouse model of glioma. International Journal of Nanomedicine, 2016, Volume 11, 5003-5014.	6.7	99
6	Rod-based urchin-like hollow microspheres of Bi2S3: Facile synthesis, photo-controlled drug release for photoacoustic imaging and chemo-photothermal therapy of tumor ablation. Biomaterials, 2020, 237, 119835.	11.4	95
7	<p>Enhancement of Radiosensitization by Silver Nanoparticles Functionalized with Polyethylene Glycol and Aptamer As1411 for Glioma Irradiation Therapy</p> . International Journal of Nanomedicine, 2019, Volume 14, 9483-9496.	6.7	79
8	Corn-like Au/Ag nanorod-mediated NIR-II photothermal/photodynamic therapy potentiates immune checkpoint antibody efficacy by reprogramming the cold tumor microenvironment. Biomaterials, 2021, 268, 120582.	11.4	69
9	Carrier-free nanoassembly of doxorubicin prodrug and siRNA for combinationally inducing immunogenic cell death and reversing immunosuppression. Nano Today, 2020, 35, 100924.	11.9	68
10	Ferrimagnetic mPEG- <i>b</i> -PHEP copolymer micelles loaded with iron oxide nanocubes and emodin for enhanced magnetic hyperthermia–chemotherapy. National Science Review, 2020, 7, 723-736.	9.5	59
11	Tumor acidity-activatable TAT targeted nanomedicine for enlarged fluorescence/magnetic resonance imaging-guided photodynamic therapy. Biomaterials, 2017, 133, 165-175.	11.4	56
12	A Donor–Acceptor Conjugated Polymer with Alternating Isoindigo Derivative and Bithiophene Units for Near-Infrared Modulated Cancer Thermo-Chemotherapy. ACS Applied Materials & Interfaces, 2016, 8, 19312-19320.	8.0	54
13	Reactive oxygen species-sensitive polymeric nanocarriers for synergistic cancer therapy. Acta Biomaterialia, 2021, 130, 17-31.	8.3	52
14	Facile Hydrophobization of siRNA with Anticancer Drug for Non-Cationic Nanocarrier-Mediated Systemic Delivery. Nano Letters, 2019, 19, 2688-2693.	9.1	51
15	A siRNA-Assisted Assembly Strategy to Simultaneously Suppress "Self―and Upregulate "Eat-Me―Signals for Nanoenabled Chemo-Immunotherapy. ACS Nano, 2021, 15, 16030-16042.	⁵ 14.6	50
16	Redox-Responsive Polyphosphoester-Based Micellar Nanomedicines for Overriding Chemoresistance in Breast Cancer Cells. ACS Applied Materials & Interfaces, 2015, 7, 26315-26325.	8.0	48
17	Multifunctional Binary Monolayers Ge _{<i>x</i>} P _{<i>y</i>} : Tunable Band Gap, Ferromagnetism, and Photocatalyst for Water Splitting. ACS Applied Materials & Interfaces, 2018, 10, 19897-19905.	8.0	48
18	Controlled synthesis of upconverting nanoparticles/CuS yolk–shell nanoparticles for <i>in vitro</i> synergistic photothermal and photodynamic therapy of cancer cells. Journal of Materials Chemistry B, 2017, 5, 9487-9496.	5.8	44

Dongdong Li

#	Article	IF	CITATIONS
19	Investigating the Effect of Chemical Structure of Semiconducting Polymer Nanoparticle on Photothermal Therapy and Photoacoustic Imaging. Theranostics, 2017, 7, 4029-4040.	10.0	44
20	Synthesis of an Oxidation-Sensitive Polyphosphoester Bearing Thioether Group for Triggered Drug Release. Biomacromolecules, 2019, 20, 1740-1747.	5.4	42
21	On-demand PEGylation and dePEGylation of PLA-based nanocarriers via amphiphilic mPEG-TK-Ce6 for nanoenabled cancer chemotherapy. Theranostics, 2019, 9, 8312-8320.	10.0	37
22	Direct Nucleusâ€Targeted Drug Delivery Using Cascade pH _e /Photo Dualâ€Sensitive Polymeric Nanocarrier for Cancer Therapy. Small, 2019, 15, e1902022.	10.0	35
23	Oxidation-sensitive polymeric nanocarrier-mediated cascade PDT chemotherapy for synergistic cancer therapy and potentiated checkpoint blockade immunotherapy. Chemical Engineering Journal, 2021, 404, 126481.	12.7	33
24	Photoswitchable Ultrafast Transactivator of Transcription (TAT) Targeting Effect for Nanocarrierâ€Based Onâ€Đemand Drug Delivery. Advanced Functional Materials, 2018, 28, 1704806.	14.9	29
25	Bioorthogonal in situ assembly of nanomedicines as drug depots for extracellular drug delivery. Nature Communications, 2022, 13, 2038.	12.8	27
26	Increasing the accumulation of aptamer AS1411 and verapamil conjugated silver nanoparticles in tumor cells to enhance the radiosensitivity of glioma. Nanotechnology, 2021, 32, 145102.	2.6	20
27	A polymeric nanocarrier with a tumor acidity-activatable arginine-rich (R ₉) peptide for enhanced drug delivery. Biomaterials Science, 2020, 8, 2255-2263.	5.4	17
28	Amorphous Feâ^'Coâ^'Pâ^'C Film on a Carbon Fiber Paper Support as an Efficient Electrocatalyst for the Oxygen Evolution Reaction. ChemElectroChem, 2019, 6, 3976-3981.	3.4	13
29	GMT8 aptamer conjugated PEGylated Ag@Au core-shell nanoparticles as a novel radiosensitizer for targeted radiotherapy of glioma. Colloids and Surfaces B: Biointerfaces, 2022, 211, 112330.	5.0	13
30	Engineering of a universal polymeric nanoparticle platform to optimize the PEG density for photodynamic therapy. Science China Chemistry, 2019, 62, 1379-1386.	8.2	11
31	A ROS-responsive synergistic delivery system for combined immunotherapy and chemotherapy. Materials Today Bio, 2022, 14, 100284.	5.5	11
32	Silver nanotriangles and chemotherapy drugs synergistically induce apoptosis in breast cancer cells via production of reactive oxygen species. Journal of Nanoparticle Research, 2019, 21, 1.	1.9	9
33	<p>Silver Nanotriangles and Chemotherapeutics Synergistically Induce Apoptosis in Glioma Cells via a ROS-Dependent Mitochondrial Pathway</p> . International Journal of Nanomedicine, 2020, Volume 15, 7791-7803.	6.7	9
34	A Novel CeO ₂ /Cu ₂ O/CuO Nanocomposite Designed from a CeAlCu Glass Precursor as an Excellent Dual Function Catalyst in Dye Wastewater Remediation. ChemCatChem, 2021, 13, 924-933.	3.7	8
35	DOX-loaded silver nanotriangles and photothermal therapy exert a synergistic antibreast cancer effect via ROS/ERK1/2 signaling pathway. Nanotechnology, 2021, 33, .	2.6	5
36	AS1411 and EpDT3-conjugated silver nanotriangle-mediated photothermal therapy for breast cancer and cancer stem cells. Nanomedicine, 2021, 16, 2503-2519.	3.3	4

Dongdong Li

#	Article	IF	CITATIONS
37	Application of silver nanotriangles as a novel contrast agent in tumor computed tomography imaging. Nanotechnology, 2021, 32, 495705.	2.6	3
38	Red and NIR Light-Responsive Polymeric Nanocarriers for On-Demand Drug Delivery. Current Medicinal Chemistry, 2020, 27, 3877-3887.	2.4	3
39	Embedded atom method potentials for La-Al-Ni ternary alloy. Journal of Applied Physics, 2019, 125, 245109.	2.5	2
40	The dependence of the boson peak on the thickness of Cu50Zr50 film metallic glasses. Physical Chemistry Chemical Physics, 2021, 23, 982-989.	2.8	2
41	Silver–Gold Core–Shell Nanoparticles: A Novel Contrast Agent for Tumor Computed Tomography Imaging. Nano, 0, , .	1.0	1
42	The effect of AS1411 surface density on the tumor targeting properties of PEGylated silver nanotriangles. Nanomedicine, 2022, 17, 289-302.	3.3	1
43	Tumor Extracellular Acidity-Sensitive Polymeric Nanocarriers for Drug Delivery and Cancer Therapy. Frontiers in Nanobiomedical Research, 2017, , 175-193.	0.1	0
44	Tumor Extracellular Acidity-Sensitive Polymeric Nanocarriers for Drug Delivery and Cancer Therapy. Frontiers in Nanobiomedical Research, 2017, , 175-193.	0.1	0