Noémi Tc Jordão

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2283853/publications.pdf Version: 2024-02-01

NOÃOMI TO LORDÃEO

#	Article	IF	CITATIONS
1	Photoâ€electrochromic salt composed by viologen cation and diarylethene anion derivatives. Electrochemical Science Advances, 2023, 3, .	2.8	2
2	Ferrocene-Based Porous Organic Polymer (FPOP): Synthesis, Characterization and an Electrochemical Study. Electrochem, 2022, 3, 184-197.	3.3	0
3	Alkali Iodide Deep Eutectic Solvents as Alternative Electrolytes for Dye Sensitized Solar Cells. Sustainable Chemistry, 2021, 2, 222-236.	4.7	10
4	Development of cellulose-based polymeric structures using dual functional ionic liquids. RSC Advances, 2021, 11, 39278-39286.	3.6	2
5	Intrinsically Electrochromic Deep Eutectic Solvents. ChemistrySelect, 2019, 4, 1530-1534.	1.5	7
6	Photochromic Room Temperature Ionic Liquids Based on Anionic Diarylethene Derivatives. ChemPhotoChem, 2019, 3, 525-528.	3.0	6
7	Deep Eutectic Solvents as Suitable Electrolytes for Electrochromic Devices. ACS Sustainable Chemistry and Engineering, 2018, 6, 2240-2249.	6.7	61
8	Studies of bipyridinium ionic liquids and deep eutectic solvents as electrolytes for electrochromic devices. Electrochimica Acta, 2018, 283, 718-726.	5.2	18
9	Deep eutectic solvents (DESs) as low-cost and green electrolytes for electrochromic devices. Green Chemistry, 2017, 19, 1653-1658.	9.0	116
10	Tetramethylguanidine-based gels and colloids of cellulose. Carbohydrate Polymers, 2017, 169, 58-64.	10.2	9
11	Bis(bipyridinium) Salts as Multicolored Electrochromic Devices. ChemPlusChem, 2017, 82, 1211-1217.	2.8	10
12	CO2 capture and reversible release using mono-saccharides and an organic superbase. Journal of Supercritical Fluids, 2015, 105, 151-157.	3.2	8
13	Electrochromic Devices Based on Disubstituted Oxoâ€Bipyridinium Ionic Liquids. ChemPlusChem, 2015, 80, 202-208.	2.8	27
14	CO ₂ capture systems based on saccharides and organic superbases. Faraday Discussions, 2015, 183, 429-444.	3.2	23
15	Reversible systems based on CO ₂ , amino-acids and organic superbases. RSC Advances, 2015, 5, 35564-35571.	3.6	16
16	Switchable electrochromic devices based on disubstituted bipyridinium derivatives. RSC Advances, 2015, 5, 27867-27873.	3.6	24
17	Dipolar motions and ionic conduction in an ibuprofen derived ionic liquid. Physical Chemistry Chemical Physics, 2015, 17, 24108-24120.	2.8	20
18	Novel Bipyridinium Ionic Liquids as Liquid Electrochromic Devices. Chemistry - A European Journal, 2014, 20, 3982-3988.	3.3	53

#	Article	IF	CITATIONS
19	4′-Carboxy-7-hydroxyflavylium. A Multistate System Involving Twelve Species Reversibly Interconverted by pH and Light Stimuli. Journal of Physical Chemistry A, 2014, 118, 4723-4731.	2.5	4
20	Effect of colloidal silver and gold nanoparticles on the thermal behavior of poly(t-butyl acrylate) composites. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2013, 436, 231-236.	4.7	11
21	Flavylium-Supported Poly(<i>N</i> -isopropylacrylamide): A Class of Multistimuli Responsive Polymer. Macromolecules, 2013, 46, 9055-9063.	4.8	11
22	Alkaline Iodide-Based Deep Eutectic Solvents for Electrochemical Applications. ACS Sustainable Chemistry and Engineering, 0, , .	6.7	13