
Angelo Monguzzi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2283498/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Low power, non-coherent sensitized photon up-conversion: modelling and perspectives. Physical Chemistry Chemical Physics, 2012, 14, 4322.	2.8	410
2	Upconversion-induced fluorescence in multicomponent systems: Steady-state excitation power threshold. Physical Review B, 2008, 78, .	3.2	398
3	Upconversion-induced delayed fluorescence in multicomponent organic systems: Role of Dexter energy transfer. Physical Review B, 2008, 77, .	3.2	182
4	Lowâ€Powerâ€Photon Upâ€Conversion in Dualâ€Dye‣oaded Polymer Nanoparticles. Advanced Functional Materials, 2012, 22, 139-143.	14.9	153
5	Highly Efficient Photon Upconversion in Self-Assembled Light-Harvesting Molecular Systems. Scientific Reports, 2015, 5, 10882.	3.3	145
6	Achieving the photon up-conversion thermodynamic yield upper limit by sensitized triplet–triplet annihilation. Physical Chemistry Chemical Physics, 2015, 17, 4020-4024.	2.8	134
7	Multicomponent Polymeric Film for Red to Green Low Power Sensitized Up-Conversion. Journal of Physical Chemistry A, 2009, 113, 1171-1174.	2.5	131
8	Fast and long-range triplet exciton diffusion inÂmetal–organic frameworks for photon upconversion at ultralow excitation power. Nature Materials, 2015, 14, 924-930.	27.5	111
9	High Efficiency Up onverting Single Phase Elastomers for Photon Managing Applications. Advanced Energy Materials, 2013, 3, 680-686.	19.5	108
10	Sensitized NIR Erbium(III) Emission in Confined Geometries: A New Strategy for Light Emitters in Telecom Applications. Journal of the American Chemical Society, 2010, 132, 4574-4576.	13.7	99
11	Composite fast scintillators based on high-Z fluorescent metal–organic framework nanocrystals. Nature Photonics, 2021, 15, 393-400.	31.4	93
12	Nanoparticle Oneâ€Ðimensional Photonic rystal Dye Laser. Small, 2009, 5, 2048-2052.	10.0	85
13	Spectral converters for photovoltaics – What's ahead. Materials Today, 2020, 33, 105-121.	14.2	83
14	Efficient Broadband Triplet–Triplet Annihilationâ€Assisted Photon Upconversion at Subsolar Irradiance in Fully Organic Systems. Advanced Functional Materials, 2015, 25, 5617-5624.	14.9	79
15	Effect of an External Magnetic Field on the Up-Conversion Photoluminescence of Organic Films: The Role of Disorder in Triplet-Triplet Annihilation. Physical Review Letters, 2009, 102, 087404.	7.8	66
16	Recent advances in the application triplet–triplet annihilation-based photon upconversion systems to solar technologies. Journal of Photonics for Energy, 2017, 8, 1.	1.3	64
17	Broadband Up-Conversion at Subsolar Irradiance: Triplet–Triplet Annihilation Boosted by Fluorescent Semiconductor Nanocrystals. Nano Letters, 2014, 14, 6644-6650.	9.1	62
18	Nanodropletâ€Containing Polymers for Efficient Lowâ€Power Light Upconversion. Advanced Materials, 2017, 29, 1702992.	21.0	62

#	Article	IF	CITATIONS
19	Photocatalytic Water-Splitting Enhancement by Sub-Bandgap Photon Harvesting. ACS Applied Materials & Interfaces, 2017, 9, 40180-40186.	8.0	60
20	Selfâ€Assembled Dual Dyeâ€Doped Nanosized Micelles for Highâ€Contrast Upâ€Conversion Bioimaging. Advanced Functional Materials, 2016, 26, 8447-8454.	14.9	58
21	Permanent excimer superstructures by supramolecular networking of metal quantum clusters. Science, 2016, 353, 571-575.	12.6	54
22	Solid-State Sensitized Upconversion in Polyacrylate Elastomers. Journal of Physical Chemistry C, 2016, 120, 2609-2614.	3.1	53
23	Novel Er ³⁺ Perfluorinated Complexes for Broadband Sensitized Near Infrared Emission. Chemistry of Materials, 2009, 21, 128-135.	6.7	52
24	Engineering Porous Emitting Framework Nanoparticles with Integrated Sensitizers for Lowâ€Power Photon Upconversion by Triplet Fusion. Advanced Materials, 2019, 31, e1903309.	21.0	46
25	NIR emitting ytterbium chelates for colourless luminescent solar concentrators. Physical Chemistry Chemical Physics, 2012, 14, 6452.	2.8	45
26	Quasi-thresholdless Photon Upconversion in Metal–Organic Framework Nanocrystals. Nano Letters, 2019, 19, 2169-2177.	9.1	43
27	DFB laser action in a flexible fully plastic multilayer. Physical Chemistry Chemical Physics, 2010, 12, 337-340.	2.8	40
28	Thermoresponsive low-power light upconverting polymer nanoparticles. Materials Horizons, 2016, 3, 602-607.	12.2	40
29	Sensitized near infrared emission from lanthanide-exchanged zeolites. Applied Physics Letters, 2008, 92, 123301.	3.3	39
30	Unraveling Triplet Excitons Photophysics in Hyper-Cross-Linked Polymeric Nanoparticles: Toward the Next Generation of Solid-State Upconverting Materials. Journal of Physical Chemistry Letters, 2016, 7, 2779-2785.	4.6	38
31	Highly luminescent scintillating hetero-ligand MOF nanocrystals with engineered Stokes shift for photonic applications. Nature Communications, 2022, 13, .	12.8	38
32	Highly Fluorescent Metal–Organic-Framework Nanocomposites for Photonic Applications. Nano Letters, 2018, 18, 528-534.	9.1	37
33	High Photon Upconversion Efficiency with Hybrid Triplet Sensitizers by Ultrafast Holeâ€Routing in Electronicâ€Doped Nanocrystals. Advanced Materials, 2020, 32, e2002953.	21.0	37
34	One Dimensional Polymeric Organic Photonic Crystals for DFB Lasers. International Journal of Photoenergy, 2008, 2008, 1-4.	2.5	33
35	Effects of Progressive Halogen Substitution on the Photoluminescence Properties of an Erbiumâ^Porphyrin Complex. Journal of Physical Chemistry A, 2010, 114, 4163-4168.	2.5	32
36	Chemically Sustainable Large Stokes Shift Derivatives for High-Performance Large-Area Transparent Luminescent Solar Concentrators. Joule, 2020, 4, 1988-2003.	24.0	32

#	Article	IF	CITATIONS
37	Nanostructured Polymers Enable Stable and Efficient Lowâ€Power Photon Upconversion. Advanced Functional Materials, 2021, 31, 2004495.	14.9	31
38	Perfluorinated nitrosopyrazolone-based erbium chelates: a new efficient solution processable NIR emitter. Chemical Communications, 2009, , 5103.	4.1	28
39	Triplet–triplet annihilation based photon up-conversion in hybrid molecule–semiconductor nanocrystal systems. Physical Chemistry Chemical Physics, 2019, 21, 12353-12359.	2.8	27
40	Growth of SnO2nanocrystals controlled by erbium doping in silica. Nanotechnology, 2006, 17, 4031-4036.	2.6	26
41	Vibrational overtones quenching of near infrared emission in Er3+ complexes. New Journal of Chemistry, 2009, 33, 1542.	2.8	26
42	Highly efficient photon upconversion based on triplet–triplet annihilation from bichromophoric annihilators. Journal of Materials Chemistry C, 2021, 9, 14201-14208.	5.5	26
43	Photon upconversion in multicomponent systems: Role of back energy transfer. Journal of Chemical Physics, 2020, 153, 114302.	3.0	25
44	Control of Ï€â^'Ï€ Interactions in Epitaxial Films of Platinum(II) Octaethyl Porphyrin. Chemistry of Materials, 2011, 23, 832-840.	6.7	24
45	Demonstration of cellular imaging by using luminescent and anti-cytotoxic europium-doped hafnia nanocrystals. Nanoscale, 2018, 10, 7933-7940.	5.6	24
46	Selfâ€Assembled pH‧ensitive Fluoromagnetic Nanotubes as Archetype System for Multimodal Imaging of Brain Cancer. Advanced Functional Materials, 2018, 28, 1707582.	14.9	22
47	Energy transfer enhancement by oxygen perturbation of spin-forbidden electronic transitions in aromatic systems. Physical Review B, 2010, 82, .	3.2	21
48	"Quantized―Doping of Individual Colloidal Nanocrystals Using Size-Focused Metal Quantum Clusters. ACS Nano, 2017, 11, 6233-6242.	14.6	21
49	Two-dimensional structural ordering in a chromophoric ionic liquid for triplet energy migration-based photon upconversion. Physical Chemistry Chemical Physics, 2018, 20, 3233-3240.	2.8	21
50	White light excitation of the near infrared Er3+ emission in exchanged zeolite sensitised by oxygen vacancies. Physical Chemistry Chemical Physics, 2011, 13, 5605.	2.8	20
51	Predictive modeling of the vibrational quenching in emitting lanthanides complexes. Synthetic Metals, 2012, 161, 2693-2699.	3.9	20
52	Metal Nanoclusters with Synergistically Engineered Optical and Buffering Activity of Intracellular Reactive Oxygen Species by Compositional and Supramolecular Design. Scientific Reports, 2017, 7, 5976.	3.3	18
53	Confined diffusion of erbium excitations inSnO2nanoparticles embedded in silica: A time-resolved infrared luminescence study. Physical Review B, 2009, 79, .	3.2	17
54	Bottomâ€up Synthesis and Selfâ€Assembly of Copper Clusters into Permanent Excimer Supramolecular Nanostructures. Angewandte Chemie - International Edition, 2018, 57, 7051-7055.	13.8	17

#	Article	IF	CITATIONS
55	Cascade sensitization of triplet–triplet annihilation based photon upconversion at sub-solar irradiance. Physical Chemistry Chemical Physics, 2018, 20, 9745-9750.	2.8	17
56	Pre-crystallization heat treatment and infrared luminescence enhancement in Ni2+-doped transparent glass-ceramics. Journal of Non-Crystalline Solids, 2019, 515, 42-49.	3.1	15
57	Developing solid-state photon upconverters based on sensitized triplet–triplet annihilation. Journal of Applied Physics, 2021, 129, .	2.5	15
58	Functionalized Scintillating Nanotubes for Simultaneous Radio- and Photodynamic Therapy of Cancer. ACS Applied Materials & Interfaces, 2021, 13, 12997-13008.	8.0	13
59	Lasing in one dimensional dye-doped random multilayer. Physical Chemistry Chemical Physics, 2010, 12, 12947.	2.8	11
60	Laser dye doped nanoparticles for highly photostable optical nanoamplifiers. RSC Advances, 2012, 2, 11731.	3.6	11
61	Second-Order Photochemical Upconversion in Organic Systems. Journal of Physical Chemistry A, 2014, 118, 1439-1442.	2.5	10
62	Mineral–organic hybrid nanotubes as highly sensitive solid state optical chemical sensors. Physical Chemistry Chemical Physics, 2014, 16, 2491-2498.	2.8	10
63	Block Copolymer Stabilized Liquid Nanodroplets Facilitate Efficient Triplet Fusion-Based Photon Upconversion in Solid Polymer Matrices. ACS Applied Materials & Interfaces, 2021, 13, 43314-43322.	8.0	10
64	Anharmonic overtones quenching in Er3+ complexes. Synthetic Metals, 2009, 159, 2410-2412.	3.9	8
65	Spectroscopic characterization of red perylimide/surfactant nanocomposites. Journal of Materials Science, 2011, 46, 6402-6407.	3.7	8
66	Donor–Acceptor Control in Grownâ€inâ€Glass Gallium Oxide Nanocrystals by Crystallizationâ€driven Heterovalent Doping. ChemPhysChem, 2017, 18, 662-669.	2.1	7
67	Treatment with ROS detoxifying gold quantum clusters alleviates the functional decline in a mouse model of Friedreich ataxia. Science Translational Medicine, 2021, 13, .	12.4	7
68	Bypassing the statistical limit of singlet generation in sensitized upconversion using fluorinated conjugated systems. Photochemical and Photobiological Sciences, 2022, 21, 913-921.	2.9	7
69	Diffusion Enhanced Upconversion in Organic Systems. International Journal of Photoenergy, 2008, 2008, 1-5.	2.5	5
70	White light generation by sensitized photon up-conversion. Chemical Physics Letters, 2012, 521, 17-19.	2.6	4
71	The Sensitization of Scintillation in Polymeric Composites Based on Fluorescent Nanocomplexes. Nanomaterials, 2021, 11, 3387.	4.1	4
72	Bioimaging: Self-Assembled Dual Dye-Doped Nanosized Micelles for High-Contrast Up-Conversion Bioimaging (Adv. Funct. Mater. 46/2016). Advanced Functional Materials, 2016, 26, 8446-8446.	14.9	3

#	Article	IF	CITATIONS
73	Publisher's Note: Upconversion-induced fluorescence in multicomponent systems: Steady-state excitation power threshold [Phys. Rev. B 78 , 195112 (2008)]. Physical Review B, 2009, 80, .	3.2	2
74	On the effects of a solid environment on sensitized up-conversion. Proceedings of SPIE, 2012, , .	0.8	2
75	Laboratory Simulation of Space Weathering on Silicate Surfaces in the Water Environment. ACS Earth and Space Chemistry, 2022, 6, 197-206.	2.7	2
76	Sentitized near-infrared emission in novel neodymium complexes bearing oligothiophene derivatives as antennae. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2008, 146, 45-49.	3.5	1
77	Composite Functional Nanomaterials Assembled via Electrostatic Interactions of Inorganic Surfaces and Organic Molecules. , 2018, , 32-37.		1
78	Non-radiative decay processes in Er ³⁺ organic complexes. , 2007, , .		0
79	Light emission and structural properties of undoped and erbium-doped nanostructured silica with SnO 2 nanoparticles. Proceedings of SPIE, 2007, , .	0.8	0
80	Photon Upconversion Based on Sensitized Triplet-Triplet Annihilation (sTTA) in Solids. , 2022, , 49-70.		0