
Gabriel G Katul

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2283460/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	FLUXNET: A New Tool to Study the Temporal and Spatial Variability of Ecosystem–Scale Carbon Dioxide, Water Vapor, and Energy Flux Densities. Bulletin of the American Meteorological Society, 2001, 82, 2415-2434.	3.3	3,018
2	Gap filling strategies for defensible annual sums of net ecosystem exchange. Agricultural and Forest Meteorology, 2001, 107, 43-69.	4.8	1,579
3	Environmental controls over carbon dioxide and water vapor exchange of terrestrial vegetation. Agricultural and Forest Meteorology, 2002, 113, 97-120.	4.8	1,133
4	Survey and synthesis of intra- and interspecific variation in stomatal sensitivity to vapour pressure deficit. Plant, Cell and Environment, 1999, 22, 1515-1526.	5.7	986
5	Soil fertility limits carbon sequestration by forest ecosystems in a CO2-enriched atmosphere. Nature, 2001, 411, 469-472.	27.8	957
6	Seasonality of ecosystem respiration and gross primary production as derived from FLUXNET measurements. Agricultural and Forest Meteorology, 2002, 113, 53-74.	4.8	606
7	Mechanisms of long-distance dispersal of seeds by wind. Nature, 2002, 418, 409-413.	27.8	565
8	The Effect of Vegetation Density on Canopy Sub-Layer Turbulence. Boundary-Layer Meteorology, 2004, 111, 565-587.	2.3	550
9	Magnitude of urban heat islands largely explained by climate and population. Nature, 2019, 573, 55-60.	27.8	546
10	Observed increase in local cooling effect of deforestation at higher latitudes. Nature, 2011, 479, 384-387.	27.8	543
11	An approximate analytical model for footprint estimation of scalar fluxes in thermally stratified atmospheric flows. Advances in Water Resources, 2000, 23, 765-772.	3.8	518
12	Gap filling strategies for long term energy flux data sets. Agricultural and Forest Meteorology, 2001, 107, 71-77.	4.8	493
13	A multi-site analysis of random error in tower-based measurements of carbon and energy fluxes. Agricultural and Forest Meteorology, 2006, 136, 1-18.	4.8	398
14	Evapotranspiration: A process driving mass transport and energy exchange in the soilâ€plantâ€atmosphereâ€climate system. Reviews of Geophysics, 2012, 50, .	23.0	334
15	Canopy nitrogen, carbon assimilation, and albedo in temperate and boreal forests: Functional relations and potential climate feedbacks. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 19336-19341.	7.1	326
16	ONE- and TWO-Equation Models for Canopy Turbulence. Boundary-Layer Meteorology, 2004, 113, 81-109.	2.3	311
17	A stomatal optimization theory to describe the effects of atmospheric CO2 on leaf photosynthesis and transpiration. Annals of Botany, 2010, 105, 431-442.	2.9	282
18	Mechanistic Analytical Models for Longâ€Đistance Seed Dispersal by Wind. American Naturalist, 2005, 166, 368-381.	2.1	245

#	Article	IF	CITATIONS
19	Leaf stomatal responses to vapour pressure deficit under current and CO ₂ â€enriched atmosphere explained by the economics of gas exchange. Plant, Cell and Environment, 2009, 32, 968-979.	5.7	244
20	Homogenization of the terrestrial water cycle. Nature Geoscience, 2020, 13, 656-658.	12.9	242
21	DETERMINANTS OF LONG-DISTANCE SEED DISPERSAL BY WIND IN GRASSLANDS. Ecology, 2004, 85, 3056-3068.	3.2	235
22	Intensity and frequency of extreme novel epidemics. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	225
23	Estimation of net ecosystem carbon exchange for the conterminous United States by combining MODIS and AmeriFlux data. Agricultural and Forest Meteorology, 2008, 148, 1827-1847.	4.8	221
24	A theoretical analysis of microbial eco-physiological and diffusion limitations to carbon cycling in drying soils. Soil Biology and Biochemistry, 2014, 73, 69-83.	8.8	220
25	Separating the effects of climate and vegetation on evapotranspiration along a successional chronosequence in the southeastern US. Global Change Biology, 2006, 12, 2115-2135.	9.5	219
26	Carbon dioxide and water vapor exchange in a warm temperate grassland. Oecologia, 2004, 138, 259-274.	2.0	216
27	A continuous measure of gross primary production for the conterminous United States derived from MODIS and AmeriFlux data. Remote Sensing of Environment, 2010, 114, 576-591.	11.0	210
28	Scaling xylem sap flux and soil water balance and calculating variance: a method for partitioning water flux in forests. Annales Des Sciences ForestiÃïres, 1998, 55, 191-216.	1.2	208
29	Optimizing stomatal conductance for maximum carbon gain under water stress: a meta-analysis across plant functional types and climates. Functional Ecology, 2011, 25, 456-467.	3.6	207
30	Separating the effects of albedo from ecoâ€physiological changes on surface temperature along a successional chronosequence in the southeastern United States. Geophysical Research Letters, 2007, 34, .	4.0	195
31	Relationship between plant hydraulic and biochemical properties derived from a steady-state coupled water and carbon transport model. Plant, Cell and Environment, 2003, 26, 339-350.	5.7	186
32	An evaluation of models for partitioning eddy covariance-measured net ecosystem exchange into photosynthesis and respiration. Agricultural and Forest Meteorology, 2006, 141, 2-18.	4.8	186
33	Soil moisture and vegetation controls on evapotranspiration in a heterogeneous Mediterranean ecosystem on Sardinia, Italy. Water Resources Research, 2006, 42, .	4.2	182
34	Time constant for water transport in loblolly pine trees estimated from time series of evaporative demand and stem sapflow. Trees - Structure and Function, 1997, 11, 412.	1.9	171
35	The dynamic role of root-water uptake in coupling potential to actual transpiration. Advances in Water Resources, 2000, 23, 427-439.	3.8	171
36	Energy partitioning between latent and sensible heat flux during the warm season at FLUXNET sites. Water Resources Research, 2002, 38, 30-1-30-11.	4.2	169

#	Article	IF	CITATIONS
37	Hydraulic limits on maximum plant transpiration and the emergence of the safety–efficiency tradeâ€off. New Phytologist, 2013, 198, 169-178.	7.3	168
38	Spread of North American wind-dispersed trees in future environments. Ecology Letters, 2011, 14, 211-219.	6.4	160
39	Hydrologic balance in an intact temperate forest ecosystem under ambient and elevated atmospheric CO2 concentration. Global Change Biology, 2002, 8, 895-911.	9.5	158
40	Assessing net ecosystem carbon exchange of U.S. terrestrial ecosystems by integrating eddy covariance flux measurements and satellite observations. Agricultural and Forest Meteorology, 2011, 151, 60-69.	4.8	157
41	Mechanistic models of seed dispersal by wind. Theoretical Ecology, 2011, 4, 113-132.	1.0	157
42	Gap-filling missing data in eddy covariance measurements using multiple imputation (MI) for annual estimations. Agricultural and Forest Meteorology, 2004, 121, 93-111.	4.8	146
43	Phase and amplitude of ecosystem carbon release and uptake potentials as derived from FLUXNET measurements. Agricultural and Forest Meteorology, 2002, 113, 75-95.	4.8	145
44	Albedo estimates for land surface models and support for a new paradigm based on foliage nitrogen concentration. Global Change Biology, 2010, 16, 696-710.	9.5	144
45	An Investigation of Higher-Order Closure Models for a Forested Canopy. Boundary-Layer Meteorology, 1998, 89, 47-74.	2.3	142
46	A mixing layer theory for flow resistance in shallow streams. Water Resources Research, 2002, 38, 32-1-32-8.	4.2	141
47	Estimating the uncertainty in annual net ecosystem carbon exchange: spatial variation in turbulent fluxes and sampling errors in eddy-covariance measurements. Global Change Biology, 2006, 12, 883-896.	9.5	140
48	Modelling assimilation and intercellular CO2 from measured conductance: a synthesis of approaches. Plant, Cell and Environment, 2000, 23, 1313-1328.	5.7	139
49	Interannual Invariability of Forest Evapotranspiration and Its Consequence to Water Flow Downstream. Ecosystems, 2010, 13, 421-436.	3.4	137
50	Climate control of terrestrial carbon exchange across biomes and continents. Environmental Research Letters, 2010, 5, 034007.	5.2	137
51	Multiscale analysis of vegetation surface fluxes: from seconds to years. Advances in Water Resources, 2001, 24, 1119-1132.	3.8	136
52	Estimation of surface heat and momentum fluxes using the flux-variance method above uniform and non-uniform terrain. Boundary-Layer Meteorology, 1995, 74, 237-260.	2.3	133
53	Exposure to an enriched CO2 atmosphere alters carbon assimilation and allocation in a pine forest ecosystem. Global Change Biology, 2003, 9, 1378-1400.	9.5	133
54	Biosphere-atmosphere exchange of CO ₂ in relation to climate: a cross-biome analysis across multiple time scales. Biogeosciences, 2009, 6, 2297-2312.	3.3	132

#	Article	IF	CITATIONS
55	WATER BALANCE DELINEATES THE SOIL LAYER IN WHICH MOISTURE AFFECTS CANOPY CONDUCTANCE. , 1998, 8, 990-1002.		131
56	Vegetationâ€infiltration relationships across climatic and soil type gradients. Journal of Geophysical Research, 2010, 115, .	3.3	130
57	Variability in net ecosystem exchange from hourly to inter-annual time scales at adjacent pine and hardwood forests: a wavelet analysis. Tree Physiology, 2005, 25, 887-902.	3.1	129
58	The hysteretic evapotranspiration—Vapor pressure deficit relation. Journal of Geophysical Research G: Biogeosciences, 2014, 119, 125-140.	3.0	128
59	A Note On The Contribution Of Dispersive Fluxes To Momentum Transfer Within Canopies. Boundary-Layer Meteorology, 2004, 111, 615-621.	2.3	126
60	THE EJECTION-SWEEP CHARACTER OF SCALAR FLUXES IN THE UNSTABLE SURFACE LAYER. Boundary-Layer Meteorology, 1997, 83, 1-26.	2.3	125
61	Finite element tree crown hydrodynamics model (FETCH) using porous media flow within branching elements: A new representation of tree hydrodynamics. Water Resources Research, 2005, 41, .	4.2	123
62	Effects of canopy heterogeneity, seed abscission and inertia on windâ€driven dispersal kernels of tree seeds. Journal of Ecology, 2008, 96, 569-580.	4.0	122
63	Effects of stomatal delays on the economics of leaf gas exchange under intermittent light regimes. New Phytologist, 2011, 192, 640-652.	7.3	122
64	Momentum Transfer and Turbulent Kinetic Energy Budgets within a Dense Model Canopy. Boundary-Layer Meteorology, 2004, 111, 589-614.	2.3	121
65	The structure of turbulent flow through submerged flexible vegetation. Journal of Hydrodynamics, 2019, 31, 274-292.	3.2	121
66	Foliage shedding in deciduous forests lifts up long-distance seed dispersal by wind. Proceedings of the United States of America, 2005, 102, 8251-8256.	7.1	116
67	Partitioning interannual variability in net ecosystem exchange between climatic variability and functional change. Tree Physiology, 2003, 23, 433-442.	3.1	115
68	Nocturnal evapotranspiration in eddy-covariance records from three co-located ecosystems in the Southeastern U.S.: Implications for annual fluxes. Agricultural and Forest Meteorology, 2009, 149, 1491-1504.	4.8	112
69	Spatial Variability of Turbulent Fluxes in the Roughness Sublayer of an Even-Aged Pine Forest. Boundary-Layer Meteorology, 1999, 93, 1-28.	2.3	111
70	An advection-aridity evaporation model. Water Resources Research, 1992, 28, 127-132.	4.2	110
71	Biological constraints on water transport in the soil–plant–atmosphere system. Advances in Water Resources, 2013, 51, 292-304.	3.8	110
72	First passage time statistics of Brownian motion with purely time dependent drift and diffusion. Physica A: Statistical Mechanics and Its Applications, 2011, 390, 1841-1852.	2.6	109

#	Article	IF	CITATIONS
73	Reduction of forest floor respiration by fertilization on both carbon dioxide-enriched and reference 17-year-old loblolly pine stands. Global Change Biology, 2003, 9, 849-861.	9.5	108
74	Plant hydraulics accentuates the effect of atmospheric moisture stress on transpiration. Nature Climate Change, 2020, 10, 691-695.	18.8	108
75	Turbulent eddy motion at the forest-atmosphere interface. Journal of Geophysical Research, 1997, 102, 13409-13421.	3.3	107
76	The Effects of Canopy Leaf Area Index on Airflow Across Forest Edges: Large-eddy Simulation and Analytical Results. Boundary-Layer Meteorology, 2008, 126, 433-460.	2.3	107
77	The Influence of Hilly Terrain on Canopy-Atmosphere Carbon Dioxide Exchange. Boundary-Layer Meteorology, 2006, 118, 189-216.	2.3	106
78	Flow dynamics and sediment transport in vegetated rivers: A review. Journal of Hydrodynamics, 2021, 33, 400-420.	3.2	105
79	Net ecosystem exchange of grassland in contrasting wet and dry years. Agricultural and Forest Meteorology, 2006, 139, 323-334.	4.8	101
80	Increasing water use efficiency along the C3 to C4 evolutionary pathway: a stomatal optimization perspective. Journal of Experimental Botany, 2014, 65, 3683-3693.	4.8	101
81	Sensible Heat Flux From Arid Regions: A Simple Flux-Variance Method. Water Resources Research, 1995, 31, 969-973.	4.2	99
82	A Theoretical and Experimental Investigation of Energy-Containing Scales in the Dynamic Sublayer of Boundary-Layer Flows. Boundary-Layer Meteorology, 1998, 86, 279-312.	2.3	99
83	Understanding strategies for seed dispersal by wind under contrasting atmospheric conditions. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 19084-19089.	7.1	99
84	Long-distance biological transport processes through the air: can nature's complexity be unfolded in silico?. Diversity and Distributions, 2005, 11, 131-137.	4.1	98
85	Latent and sensible heat flux predictions from a uniform pine forest using surface renewal and flux variance methods. Boundary-Layer Meteorology, 1996, 80, 249-282.	2.3	96
86	Contrasting responses to drought of forest floor CO2 efflux in a Loblolly pine plantation and a nearby Oak-Hickory forest. Global Change Biology, 2005, 11, 421-434.	9.5	95
87	Intermittency, local isotropy, and nonâ€Gaussian statistics in atmospheric surface layer turbulence. Physics of Fluids, 1994, 6, 2480-2492.	4.0	93
88	Exploring the Effects of Microscale Structural Heterogeneity of Forest Canopies Using Large-Eddy Simulations. Boundary-Layer Meteorology, 2009, 132, 351-382.	2.3	93
89	Onset of water stress, hysteresis in plant conductance, and hydraulic lift: Scaling soil water dynamics from millimeters to meters. Water Resources Research, 2008, 44, .	4.2	92
90	Modeling CO2and water vapor turbulent flux distributions within a forest canopy. Journal of Geophysical Research, 2000, 105, 26333-26351.	3.3	90

#	Article	IF	CITATIONS
91	Organised Motion and Radiative Perturbations in the Nocturnal Canopy Sublayer above an Even-Aged Pine Forest. Boundary-Layer Meteorology, 2004, 112, 129-157.	2.3	90
92	A Penman-Brutsaert Model for wet surface evaporation. Water Resources Research, 1992, 28, 121-126.	4.2	89
93	Are ecosystem carbon inputs and outputs coupled at short time scales? A case study from adjacent pine and hardwood forests using impulse?response analysis. Plant, Cell and Environment, 2007, 30, 700-710.	5.7	89
94	Evaporation from three water bodies of different sizes and climates: Measurements and scaling analysis. Advances in Water Resources, 2008, 31, 160-172.	3.8	89
95	A Lagrangian dispersion model for predicting CO2sources, sinks, and fluxes in a uniform loblolly pine (Pinus taeda L.) stand. Journal of Geophysical Research, 1997, 102, 9309-9321.	3.3	88
96	Role of vegetation in determining carbon sequestration along ecological succession in the southeastern United States. Global Change Biology, 2008, 14, 1409-1427.	9.5	87
97	Reduced resilience as an early warning signal of forest mortality. Nature Climate Change, 2019, 9, 880-885.	18.8	87
98	Role of microtopography in rainfallâ€runoff partitioning: An analysis using idealized geometry. Water Resources Research, 2010, 46, .	4.2	86
99	The effect of plant water storage on water fluxes within the coupled soil–plant system. New Phytologist, 2017, 213, 1093-1106.	7.3	86
100	Optimization of stomatal conductance for maximum carbon gain under dynamic soil moisture. Advances in Water Resources, 2013, 62, 90-105.	3.8	84
101	Soil Moisture Feedbacks on Convection Triggers: The Role of Soil–Plant Hydrodynamics. Journal of Hydrometeorology, 2009, 10, 96-112.	1.9	83
102	Temporal variability in 13C of respired CO2 in a pine and a hardwood forest subject to similar climatic conditions. Oecologia, 2005, 142, 57-69.	2.0	82
103	Multiscale model intercomparisons of CO2 and H2 O exchange rates in a maturing southeastern US pine forest. Global Change Biology, 2006, 12, 1189-1207.	9.5	80
104	Simplified expressions for adjusting higher-order turbulent statistics obtained from open path gas analyzers. Boundary-Layer Meteorology, 2007, 122, 205-216.	2.3	80
105	Canopy conductance of Pinus taeda, Liquidambar styraciflua and Quercus phellos under varying atmospheric and soil water conditions. Tree Physiology, 1998, 18, 307-315.	3.1	79
106	Causality and Persistence in Ecological Systems: A Nonparametric Spectral Granger Causality Approach. American Naturalist, 2012, 179, 524-535.	2.1	78
107	On the spectrum of soil moisture from hourly to interannual scales. Water Resources Research, 2007, 43, .	4.2	77
108	Modelling the limits on the response of net carbon exchange to fertilization in a south-eastern pine forest. Plant, Cell and Environment, 2002, 25, 1095-1120.	5.7	76

#	Article	IF	CITATIONS
109	A perspective on optimal leaf stomatal conductance under CO2 and light co-limitations. Agricultural and Forest Meteorology, 2013, 182-183, 191-199.	4.8	74
110	Coupling boreal forest CO2, H2O and energy flows by a vertically structured forest canopy – Soil model with separate bryophyte layer. Ecological Modelling, 2015, 312, 385-405.	2.5	74
111	Detecting forest response to droughts with global observations of vegetation water content. Global Change Biology, 2021, 27, 6005-6024.	9.5	73
112	Modeling CO2sources, sinks, and fluxes within a forest canopy. Journal of Geophysical Research, 1999, 104, 6081-6091.	3.3	72
113	The relative importance of ejections and sweeps to momentum transfer in the atmospheric boundary layer. Boundary-Layer Meteorology, 2006, 120, 367-375.	2.3	72
114	Stochastic Dynamics of Plant-Water Interactions. Annual Review of Ecology, Evolution, and Systematics, 2007, 38, 767-791.	8.3	72
115	Investigating a Hierarchy of Eulerian Closure Models for Scalar Transfer Inside Forested Canopies. Boundary-Layer Meteorology, 2008, 128, 1-32.	2.3	72
116	Increases in air temperature can promote wind-driven dispersal and spread of plants. Proceedings of the Royal Society B: Biological Sciences, 2009, 276, 3081-3087.	2.6	72
117	Probability density functions of turbulent velocity and temperature in the atmospheric surface layer. Water Resources Research, 1996, 32, 1681-1688.	4.2	71
118	A network model links wood anatomy to xylem tissue hydraulic behaviour and vulnerability to cavitation. Plant, Cell and Environment, 2018, 41, 2718-2730.	5.7	71
119	The relationship between reference canopy conductance and simplified hydraulic architecture. Advances in Water Resources, 2009, 32, 809-819.	3.8	70
120	Estimation of In-Canopy Ammonia Sources and Sinks in a Fertilized <i>Zea mays</i> Field. Environmental Science & Technology, 2010, 44, 1683-1689.	10.0	70
121	Hydraulic resistance of submerged rigid vegetation derived from firstâ€order closure models. Water Resources Research, 2009, 45, .	4.2	69
122	On the Active Role of Temperature in Surface-Layer Turbulence. Journals of the Atmospheric Sciences, 1994, 51, 2181-2195.	1.7	68
123	Low-wavenumber spectral characteristics of velocity and temperature in the atmospheric surface layer. Journal of Geophysical Research, 1995, 100, 14243.	3.3	68
124	The porous media model for the hydraulic system of a conifer tree: Linking sap flux data to transpiration rate. Ecological Modelling, 2006, 191, 447-468.	2.5	67
125	Empirical and optimal stomatal controls on leaf and ecosystem level CO2 and H2O exchange rates. Agricultural and Forest Meteorology, 2011, 151, 1672-1689.	4.8	67
126	A Note on the Flux-Variance Similarity Relationships for Heat and Water Vapour in the Unstable Atmospheric Surface Layer. Boundary-Layer Meteorology, 1999, 90, 327-338.	2.3	66

#	Article	IF	CITATIONS
127	Principal Length Scales in Second-Order Closure Models for Canopy Turbulence. Journal of Applied Meteorology and Climatology, 1999, 38, 1631-1643.	1.7	66
128	Invariant soil water potential at zero microbial respiration explained by hydrological discontinuity in dry soils. Geophysical Research Letters, 2014, 41, 7151-7158.	4.0	66
129	Large CO ₂ effluxes at night and during synoptic weather events significantly contribute to CO ₂ emissions from a reservoir. Environmental Research Letters, 2016, 11, 064001.	5.2	66
130	Increasing atmospheric humidity and CO ₂ concentration alleviate forest mortality risk. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 9918-9923.	7.1	66
131	Clobal convergence of COVID-19 basic reproduction number and estimation from early-time SIR dynamics. PLoS ONE, 2020, 15, e0239800.	2.5	66
132	Seasonal hysteresis of surface urban heat islands. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 7082-7089.	7.1	66
133	Soil water depletion by oak trees and the influence of root water uptake on the moisture content spatial statistics. Water Resources Research, 1997, 33, 611-623.	4.2	64
134	Vertical variability and effect of stability on turbulence characteristics down to the floor of a pine forest. Tellus, Series B: Chemical and Physical Meteorology, 2007, 59, 919-936.	1.6	64
135	Estimation of longâ€ŧerm basin scale evapotranspiration from streamflow time series. Water Resources Research, 2010, 46, .	4.2	64
136	An Investigation of the Conditional Sampling Method Used to Estimate Fluxes of Active, Reactive, and Passive Scalars. Journal of Applied Meteorology and Climatology, 1996, 35, 1835-1845.	1.7	63
137	Estimation of groundwater evaporation and salt flux from Owens Lake, California, USA. Journal of Hydrology, 1997, 200, 110-135.	5.4	63
138	Physical basis for a time series model of soil water content. Water Resources Research, 1992, 28, 2437-2446.	4.2	62
139	Relative importance of local and regional controls on coupled water, carbon, and energy fluxes. Advances in Water Resources, 2001, 24, 1103-1118.	3.8	62
140	HUMAN EFFECTS ON LONG-DISTANCE WIND DISPERSAL AND COLONIZATION BY GRASSLAND PLANTS. Ecology, 2004, 85, 3069-3079.	3.2	62
141	THE STRUCTURE OF TURBULENCE NEAR A TALL FOREST EDGE: THE BACKWARD-FACING STEP FLOW ANALOGY REVISITED. , 2008, 18, 1420-1435.		62
142	Persistence and memory timescales in rootâ€zone soil moisture dynamics. Water Resources Research, 2016, 52, 1427-1445.	4.2	62
143	The Persistent Challenge of Surface Heterogeneity in Boundary-Layer Meteorology: A Review. Boundary-Layer Meteorology, 2020, 177, 227-245.	2.3	62
144	Estimation of the diurnal variation of potential evaporation from a wet bare soil surface. Journal of Hydrology, 1992, 132, 71-89.	5.4	61

#	Article	IF	CITATIONS
145	Active Turbulence and Scalar Transport near the Forest–Atmosphere Interface. Journal of Applied Meteorology and Climatology, 1998, 37, 1533-1546.	1.7	61
146	Buoyancy and The Sensible Heat Flux Budget Within Dense Canopies. Boundary-Layer Meteorology, 2006, 118, 217-240.	2.3	61
147	Partitioning ozone fluxes between canopy and forest floor by measurements and a multi-layer model. Agricultural and Forest Meteorology, 2013, 173, 85-99.	4.8	61
148	The partitioning of attached and detached eddy motion in the atmospheric surface layer using Lorentz wavelet filtering. Boundary-Layer Meteorology, 1996, 77, 153-172.	2.3	60
149	Modelling Vegetation-Atmosphere Co2 Exchange By A Coupled Eulerian-Langrangian Approach. Boundary-Layer Meteorology, 2000, 95, 91-122.	2.3	60
150	Scalar dispersion within a model canopy: Measurements and three-dimensional Lagrangian models. Advances in Water Resources, 2006, 29, 326-335.	3.8	60
151	Hydrologic and atmospheric controls on initiation of convective precipitation events. Water Resources Research, 2007, 43, .	4.2	60
152	Analysis of Land Surface Heat Fluxes Using the Orthonormal Wavelet Approach. Water Resources Research, 1995, 31, 2743-2749.	4.2	59
153	ENERGY-INERTIAL SCALE INTERACTIONS FOR VELOCITY AND TEMPERATURE IN THE UNSTABLE ATMOSPHERIC SURFACE LAYER. Boundary-Layer Meteorology, 1997, 82, 49-80.	2.3	59
154	Water cycling in a Bornean tropical rain forest under current and projected precipitation scenarios. Water Resources Research, 2004, 40, .	4.2	59
155	Tree root systems competing for soil moisture in a 3D soil–plant model. Advances in Water Resources, 2014, 66, 32-42.	3.8	59
156	Linking Meteorology, Turbulence, and Air Chemistry in the Amazon Rain Forest. Bulletin of the American Meteorological Society, 2016, 97, 2329-2342.	3.3	59
157	Boundary-Layer Flow Over Complex Topography. Boundary-Layer Meteorology, 2020, 177, 247-313.	2.3	58
158	Dissipation methods, Taylor's hypothesis, and stability correction functions in the atmospheric surface layer. Journal of Geophysical Research, 1997, 102, 16391-16405.	3.3	57
159	A stochastic model for daily subsurface CO2 concentration and related soil respiration. Advances in Water Resources, 2008, 31, 987-994.	3.8	56
160	Spectral Short-circuiting and Wake Production within the Canopy Trunk Space of an Alpine Hardwood Forest. Boundary-Layer Meteorology, 2008, 126, 415-431.	2.3	56
161	Analysis of soil carbon transit times and age distributions using network theories. Journal of Geophysical Research, 2009, 114, .	3.3	56
162	Mean Velocity Profile in a Sheared and Thermally Stratified Atmospheric Boundary Layer. Physical Review Letters, 2011, 107, 268502.	7.8	56

#	Article	IF	CITATIONS
163	Abiotic and biotic controls of soil moisture spatiotemporal variability and the occurrence of hysteresis. Water Resources Research, 2015, 51, 3505-3524.	4.2	56
164	Non-closure of the surface energy balance explained by phase difference between vertical velocity and scalars of large atmospheric eddies. Environmental Research Letters, 2017, 12, 034025.	5.2	56
165	The hysteresis response of soil CO ₂ concentration and soil respiration to soil temperature. Journal of Geophysical Research G: Biogeosciences, 2015, 120, 1605-1618.	3.0	55
166	Estimation of in situ hydraulic conductivity function from nonlinear filtering theory. Water Resources Research, 1993, 29, 1063-1070.	4.2	53
167	Estimating scalar sources, sinks, and fluxes in a forest canopy using Lagrangian, Eulerian, and hybrid inverse models. Journal of Geophysical Research, 2000, 105, 29475-29488.	3.3	53
168	Evapotranspiration Intensifies over the Conterminous United States. Journal of Water Resources Planning and Management - ASCE, 2001, 127, 354-362.	2.6	51
169	Diurnal centroid of ecosystem energy and carbon fluxes at FLUXNET sites. Journal of Geophysical Research, 2003, 108, .	3.3	51
170	Turbulent flows on forested hilly terrain: the recirculation region. Quarterly Journal of the Royal Meteorological Society, 2007, 133, 1027-1039.	2.7	51
171	Vegetation pattern shift as a result of rising atmospheric CO2 in arid ecosystems. Theoretical Population Biology, 2008, 74, 332-344.	1.1	51
172	Scaling Properties of Biologically Active Scalar Concentration Fluctuations in the Atmospheric Surface Layer over a Managed Peatland. Boundary-Layer Meteorology, 2010, 136, 407-430.	2.3	51
173	Radon measurements in well and spring water in Lebanon. Radiation Measurements, 2007, 42, 298-303.	1.4	50
174	A flow resistance model for assessing the impact of vegetation on flood routing mechanics. Water Resources Research, 2011, 47, .	4.2	50
175	Partitioning Eddy Covariance Water Flux Components Using Physiological and Micrometeorological Approaches. Journal of Geophysical Research G: Biogeosciences, 2018, 123, 3353-3370.	3.0	50
176	Turbulence structure in open channel flow with partially covered artificial emergent vegetation. Journal of Hydrology, 2019, 573, 180-193.	5.4	50
177	Modelling night-time ecosystem respiration by a constrained source optimization method. Global Change Biology, 2002, 8, 124-141.	9.5	49
178	A remote sensing observatory for hydrologic sciences: A genesis for scaling to continental hydrology. Water Resources Research, 2006, 42, .	4.2	49
179	Skin temperature perturbations induced by surface layer turbulence above a grass surface. Water Resources Research, 1998, 34, 1265-1274.	4.2	48
180	On the Anomalous Behaviour of Scalar Flux–Variance Similarity Functions Within the Canopy Sub-layer of a Dense Alpine Forest. Boundary-Layer Meteorology, 2008, 128, 33-57.	2.3	48

#	Article	IF	CITATIONS
181	Estimating daytime subcanopy respiration from conditional sampling methods applied to multi-scalar high frequency turbulence time series. Agricultural and Forest Meteorology, 2008, 148, 1210-1229.	4.8	48
182	Two phenomenological constants explain similarity laws in stably stratified turbulence. Physical Review E, 2014, 89, 023007.	2.1	48
183	Climate, not conflict, explains extreme Middle East dust storm. Environmental Research Letters, 2016, 11, 114013.	5.2	48
184	Role of biomass spread in vegetation pattern formation within arid ecosystems. Water Resources Research, 2008, 44, .	4.2	47
185	On the complementary relationship between marginal nitrogen and water-use efficiencies among Pinus taeda leaves grown under ambient and CO2-enriched environments. Annals of Botany, 2013, 111, 467-477.	2.9	46
186	The "Inactive―Eddy Motion and the Large-Scale Turbulent Pressure Fluctuations in the Dynamic Sublayer. Journals of the Atmospheric Sciences, 1996, 53, 2512-2524.	1.7	45
187	The ejection-sweep cycle over bare and forested gentle hills: a laboratory experiment. Boundary-Layer Meteorology, 2007, 122, 493-515.	2.3	45
188	The Temperature–Humidity Covariance in the Marine Surface Layer: A One-dimensional Analytical Model. Boundary-Layer Meteorology, 2008, 126, 263-278.	2.3	45
189	Modeling Seed Dispersal Distances: Implications For Transgenic Pinus Taeda. , 2006, 16, 117-124.		44
190	Ecoâ€hydrological controls on summertime convective rainfall triggers. Global Change Biology, 2007, 13, 887-896.	9.5	44
191	The effect of canopy roughness density on the constitutive components of the dispersive stresses. Experiments in Fluids, 2008, 45, 111-121.	2.4	44
192	Revisiting the Turbulent Prandtl Number in an Idealized Atmospheric Surface Layer. Journals of the Atmospheric Sciences, 2015, 72, 2394-2410.	1.7	44
193	Modeling dynamic understory photosynthesis of contrasting species in ambient and elevated carbon dioxide. Oecologia, 2001, 126, 487-499.	2.0	43
194	Estimating Heat Sources And Fluxes In Thermally Stratified Canopy Flows Using Higher-Order Closure Models. Boundary-Layer Meteorology, 2002, 103, 125-142.	2.3	43
195	An experimental investigation of the mean momentum budget inside dense canopies on narrow gentle hilly terrain. Agricultural and Forest Meteorology, 2007, 144, 1-13.	4.8	43
196	Co-spectrum and mean velocity in turbulent boundary layers. Physics of Fluids, 2013, 25, .	4.0	43
197	Steady nonuniform shallow flow within emergent vegetation. Water Resources Research, 2015, 51, 10047-10064.	4.2	43
198	Turbulent Pressure and Velocity Perturbations Induced by Gentle Hills Covered with Sparse and Dense Canopies. Boundary-Layer Meteorology, 2009, 133, 189-217.	2.3	42

#	Article	IF	CITATIONS
199	Existence ofkâ^'1power-law scaling in the equilibrium regions of wall-bounded turbulence explained by Heisenberg's eddy viscosity. Physical Review E, 2012, 86, 066311.	2.1	42
200	Mechanistic modeling of seed dispersal by wind over hilly terrain. Ecological Modelling, 2014, 274, 29-40.	2.5	42
201	A dynamical system perspective on plant hydraulic failure. Water Resources Research, 2014, 50, 5170-5183.	4.2	42
202	An experimental investigation of turbulent flows over a hilly surface. Physics of Fluids, 2007, 19, 036601.	4.0	41
203	Plant Propagation Fronts and Wind Dispersal: An Analytical Model to Upscale from Seconds to Decades Using Superstatistics. American Naturalist, 2008, 171, 468-479.	2.1	41
204	An Analytical Model for the Distribution of CO2 Sources and Sinks, Fluxes, and Mean Concentration Within the Roughness Sub-Layer. Boundary-Layer Meteorology, 2010, 135, 31-50.	2.3	41
205	Increased resin flow in mature pine trees growing under elevated CO2 and moderate soil fertility. Tree Physiology, 2012, 32, 752-763.	3.1	41
206	Optimal plant waterâ€use strategies under stochastic rainfall. Water Resources Research, 2014, 50, 5379-5394.	4.2	41
207	The dual role of soil crusts in desertification. Journal of Geophysical Research G: Biogeosciences, 2015, 120, 2108-2119.	3.0	41
208	On the variability of the ecosystem response to elevated atmospheric CO2 across spatial and temporal scales at the Duke Forest FACE experiment. Agricultural and Forest Meteorology, 2017, 232, 367-383.	4.8	41
209	A phenomenological model for the flow resistance over submerged vegetation. Water Resources Research, 2012, 48, .	4.2	40
210	Root controls on water redistribution and carbon uptake in the soil–plant system under current and future climate. Advances in Water Resources, 2013, 60, 110-120.	3.8	40
211	Identification of Low-Dimensional Energy Containing/Flux Transporting Eddy Motion in the Atmospheric Surface Layer Using Wavelet Thresholding Methods. Journals of the Atmospheric Sciences, 1998, 55, 377-389.	1.7	39
212	Analytical models for the mean flow inside dense canopies on gentle hilly terrain. Quarterly Journal of the Royal Meteorological Society, 2008, 134, 1095-1112.	2.7	39
213	Predicting population survival under future climate change: density dependence, drought and extraction in an insular bighorn sheep. Journal of Animal Ecology, 2009, 78, 666-673.	2.8	39
214	Unsteady overland flow on flat surfaces induced by spatial permeability contrasts. Advances in Water Resources, 2011, 34, 1049-1058.	3.8	39
215	Seed dispersal by wind: towards a conceptual framework of seed abscission and its contribution to longâ€distance dispersal. Journal of Ecology, 2013, 101, 889-904.	4.0	39
216	Logarithmic scaling in the longitudinal velocity variance explained by a spectral budget. Physics of Fluids, 2013, 25, .	4.0	39

#	Article	IF	CITATIONS
217	Revisiting the formulations for the longitudinal velocity variance in the unstable atmospheric surface layer. Quarterly Journal of the Royal Meteorological Society, 2015, 141, 1699-1711.	2.7	39
218	Soil–plant–atmosphere conditions regulating convective cloud formation above southeastern US pine plantations. Global Change Biology, 2016, 22, 2238-2254.	9.5	39
219	Do the energy fluxes and surface conductance of boreal coniferous forests in Europe scale with leaf area?. Clobal Change Biology, 2016, 22, 4096-4113.	9.5	39
220	Conditional sampling, bursting, and the intermittent structure of sensible heat flux. Journal of Geophysical Research, 1994, 99, 22869.	3.3	38
221	Analytical approximation to the solutions of Richards' equation with applications to infiltration, ponding, and time compression approximation. Advances in Water Resources, 1999, 23, 189-194.	3.8	38
222	Estimating global and local scaling exponents in turbulent flows using discrete wavelet transformations. Physics of Fluids, 2001, 13, 241-250.	4.0	38
223	Quantifying Organization of Atmospheric Turbulent Eddy Motion Using Nonlinear Time Series Analysis. Boundary-Layer Meteorology, 2003, 106, 507-525.	2.3	38
224	Surface heterogeneity and its signature in higher-order scalar similarity relationships. Agricultural and Forest Meteorology, 2008, 148, 902-916.	4.8	38
225	Mean velocity and temperature profiles in a sheared diabatic turbulent boundary layer. Physics of Fluids, 2012, 24, .	4.0	38
226	Crossâ€scale impact of climate temporal variability on ecosystem water and carbon fluxes. Journal of Geophysical Research G: Biogeosciences, 2015, 120, 1716-1740.	3.0	38
227	The Duality of Reforestation Impacts on Surface and Air Temperature. Journal of Geophysical Research G: Biogeosciences, 2020, 125, e2019JG005543.	3.0	38
228	On the variability of the Priestleyâ€Taylor coefficient over water bodies. Water Resources Research, 2016, 52, 150-163.	4.2	37
229	Distinct Turbulence Structures in Stably Stratified Boundary Layers With Weak and Strong Surface Shear. Journal of Geophysical Research D: Atmospheres, 2018, 123, 7839-7854.	3.3	37
230	Evaporation and the field scale soil water diffusivity function. Water Resources Research, 1993, 29, 1279-1286.	4.2	36
231	The Lagrangian Stochastic Model for fetch and latent heat flux estimation above uniform and nonuniform terrain. Water Resources Research, 1997, 33, 427-438.	4.2	36
232	An analysis of intermittency, scaling, and surface renewal in atmospheric surface layer turbulence. Physica D: Nonlinear Phenomena, 2006, 215, 117-126.	2.8	36
233	Secondary seed dispersal and its role in landscape organization. Geophysical Research Letters, 2009, 36, .	4.0	36
234	Buoyancy effects on the integral lengthscales and mean velocity profile in atmospheric surface layer flows. Physics of Fluids, 2013, 25, .	4.0	36

#	Article	IF	CITATIONS
235	Turbulent mixing and removal of ozone within an Amazon rainforest canopy. Journal of Geophysical Research D: Atmospheres, 2017, 122, 2791-2811.	3.3	36
236	Sensible heat flux estimation by flux variance and half-order time derivative methods. Water Resources Research, 2001, 37, 2333-2343.	4.2	35
237	Estimating Co2 Source/Sink Distributions Within A Rice Canopy Using Higher-Order Closure Model. Boundary-Layer Meteorology, 2001, 98, 103-125.	2.3	35
238	The Effects of Thermal Stratification on Clustering Properties of Canopy Turbulence. Boundary-Layer Meteorology, 2009, 130, 307-325.	2.3	35
239	A branch scale analytical model for predicting the vegetation collection efficiencyÂof ultrafine particles. Atmospheric Environment, 2012, 51, 293-302.	4.1	35
240	The Effect of the Screen on the Mass, Momentum, and Energy Exchange Rates of a Uniform Crop Situated in an Extensive Screenhouse. Boundary-Layer Meteorology, 2012, 142, 339-363.	2.3	35
241	Estimation of Momentum and Heat Fluxes Using Dissipation and Flux-Variance Methods in the Unstable Surface Layer. Water Resources Research, 1996, 32, 2453-2462.	4.2	34
242	Modeling nighttime ecosystem respiration from measured CO2concentration and air temperature profiles using inverse methods. Journal of Geophysical Research, 2006, 111, .	3.3	34
243	Evaporation from a reservoir with fluctuating water level: Correcting for limited fetch. Journal of Hydrology, 2011, 404, 146-156.	5.4	34
244	Vertical characterization of highly oxygenated molecules (HOMs) below and above a boreal forest canopy. Atmospheric Chemistry and Physics, 2018, 18, 17437-17450.	4.9	34
245	Advancing ecohydrology in the 21st century: A convergence of opportunities. Ecohydrology, 2020, 13, e2208.	2.4	34
246	GROSS PRIMARY PRODUCTIVITY IN DUKE FOREST: MODELING SYNTHESIS OF CO2EXPERIMENT AND EDDY–FLUX DATA. , 2001, 11, 239-252.		33
247	Interaction between large and small scales in the canopy sublayer. Geophysical Research Letters, 2004, 31, n/a-n/a.	4.0	33
248	Revisiting rainfall clustering and intermittency across different climatic regimes. Water Resources Research, 2009, 45, .	4.2	33
249	Leaf conductance and carbon gain under salt-stressed conditions. Journal of Geophysical Research, 2011, 116, .	3.3	33
250	The Effects of Leaf Area Density Variation on the Particle Collection Efficiency in the Size Range of Ultrafine Particles (UFP). Environmental Science & Technology, 2013, 47, 11607-11615.	10.0	33
251	Xylem functioning, dysfunction and repair: a physical perspective and implications for phloem transport. Tree Physiology, 2019, 39, 243-261.	3.1	33
252	Estimation of bare soil evaporation using skin temperature measurements. Journal of Hydrology, 1992, 132, 91-106.	5.4	32

#	Article	IF	CITATIONS
253	A model for sensible heat flux probability density function for near-neutral and slightly-stable atmospheric flows. Boundary-Layer Meteorology, 1994, 71, 1-20.	2.3	32
254	Local isotropy and anisotropy in the sheared and heated atmospheric surface layer. Boundary-Layer Meteorology, 1995, 72, 123-148.	2.3	32
255	Micro- and macro-dispersive fluxes in canopy flows. Acta Geophysica, 2008, 56, 778-799.	2.0	32
256	Drought sensitivity of patterned vegetation determined by rainfall-land surface feedbacks. Journal of Geophysical Research, 2011, 116, .	3.3	32
257	Manning's formula and Strickler's scaling explained by a co-spectral budget model. Journal of Fluid Mechanics, 2017, 812, 1189-1212.	3.4	32
258	Carbon and water cycling in a Bornean tropical rainforest under current and future climate scenarios. Advances in Water Resources, 2004, 27, 1135-1150.	3.8	31
259	The effects of plant pathogens on tree recruitment in the Western Amazon under a projected future climate: a dynamical systems analysis. Journal of Ecology, 2010, 98, 1434-1446.	4.0	31
260	The effects of the canopy medium on dry deposition velocities of aerosol particles in the canopy sub-layer above forested ecosystems. Atmospheric Environment, 2011, 45, 1203-1212.	4.1	31
261	Turbulent Energy Spectra and Cospectra of Momentum and Heat Fluxes in the Stable Atmospheric Surface Layer. Boundary-Layer Meteorology, 2015, 157, 1-21.	2.3	31
262	Competition for light and water in a coupled soil-plant system. Advances in Water Resources, 2017, 108, 216-230.	3.8	31
263	Transport in a coordinated soil-root-xylem-phloem leaf system. Advances in Water Resources, 2018, 119, 1-16.	3.8	31
264	Intermittency in Atmospheric Surface Layer Turbulence: The Orthonormal Wavelet Representation. Wavelet Analysis and Its Applications, 1994, , 81-105.	0.2	31
265	The spatial structure of turbulence at production wavenumbers using orthonormal wavelets. Boundary-Layer Meteorology, 1995, 75, 81-108.	2.3	30
266	Impact of elevated atmospheric CO2on forest floor respiration in a temperate pine forest. Global Biogeochemical Cycles, 2004, 18, n/a-n/a.	4.9	30
267	On the anomalous behavior of the Lagrangian structure function similarity constant inside dense canopies. Atmospheric Environment, 2008, 42, 4212-4231.	4.1	30
268	Maximum discharge from snowmelt in a changing climate. Geophysical Research Letters, 2011, 38, n/a-n/a.	4.0	30
269	On the role of return to isotropy in wall-bounded turbulent flows with buoyancy. Journal of Fluid Mechanics, 2018, 856, 61-78.	3.4	30
270	Spectral scaling of static pressure fluctuations in the atmospheric surface layer: The interaction between large and small scales. Physics of Fluids, 1998, 10, 1725-1732.	4.0	29

#	Article	IF	CITATIONS
271	An objective method for determining principal time scales of coherent eddy structures using orthonormal wavelets. Advances in Water Resources, 1999, 22, 561-566.	3.8	29
272	Two-Dimensional Scalar Spectra in the Deeper Layers of a Dense and Uniform Model Canopy. Boundary-Layer Meteorology, 2006, 121, 267-281.	2.3	29
273	Predicting the dry deposition of aerosolâ€sized particles using layerâ€resolved canopy and pipe flow analogy models: Role of turbophoresis. Journal of Geophysical Research, 2010, 115, .	3.3	29
274	Quantifying net ecosystem exchange by multilevel ecophysiological and turbulent transport models. Advances in Water Resources, 2002, 25, 1357-1366.	3.8	28
275	The Lagrangian stochastic model for estimating footprint and water vapor fluxes over inhomogeneous surfaces. International Journal of Biometeorology, 2009, 53, 87-100.	3.0	28
276	How well do stomatal conductance models perform on closing plant carbon budgets? A test using seedlings grown under current and elevated air temperatures. Journal of Geophysical Research, 2011, 116, .	3.3	28
277	The role of surface characteristics on intermittency and zeroâ€crossing properties of atmospheric turbulence. Journal of Geophysical Research, 2012, 117, .	3.3	28
278	Momentum balance of katabatic flow on steep slopes covered with short vegetation. Geophysical Research Letters, 2014, 41, 4761-4768.	4.0	28
279	An ecohydrological perspective on droughtâ€induced forest mortality. Journal of Geophysical Research G: Biogeosciences, 2014, 119, 965-981.	3.0	28
280	Scaling and Similarity of the Anisotropic Coherent Eddies in Near-Surface Atmospheric Turbulence. Journals of the Atmospheric Sciences, 2018, 75, 943-964.	1.7	28
281	The application of a scanning, water Raman-lidar as a probe of the atmospheric boundary layer. IEEE Transactions on Geoscience and Remote Sensing, 1993, 31, 70-79.	6.3	27
282	The effects of elevated atmospheric CO2 and nitrogen amendments on subsurface CO2 production and concentration dynamics in a maturing pine forest. Biogeochemistry, 2009, 94, 271-287.	3.5	27
283	Modeling the vegetation–atmosphere carbon dioxide and water vapor interactions along a controlled CO2 gradient. Ecological Modelling, 2011, 222, 653-665.	2.5	27
284	Flume experiments on wind induced flow in static water bodies in the presence of protruding vegetation. Advances in Water Resources, 2015, 76, 11-28.	3.8	27
285	Submeso Motions and Intermittent Turbulence Across a Nocturnal Low-Level Jet: A Self-Organized Criticality Analogy. Boundary-Layer Meteorology, 2019, 172, 17-43.	2.3	27
286	A Wavelet-Based Correction Method for Eddy-Covariance High-Frequency Losses in Scalar Concentration Measurements. Boundary-Layer Meteorology, 2013, 146, 81-102.	2.3	26
287	Drag coefficient estimation using flume experiments in shallow non-uniform water flow within emergent vegetation during rainfall. Ecological Indicators, 2018, 92, 367-378.	6.3	26
288	A Dynamic Optimality Principle for Water Use Strategies Explains Isohydric to Anisohydric Plant Responses to Drought. Frontiers in Forests and Global Change, 2019, 2, .	2.3	26

#	Article	IF	CITATIONS
289	Watershed Scale Shear Stress From Tethersonde Wind Profile Measurements Under Near Neutral and Unstable Atmospheric Stability. Water Resources Research, 1995, 31, 961-968.	4.2	25
290	The local effect of intermittency on the inertial subrange energy spectrum of the atmospheric surface layer. Boundary-Layer Meteorology, 1996, 79, 35-50.	2.3	25
291	The role of coherent turbulent structures in explaining scalar dissimilarity within the canopy sublayer. Environmental Fluid Mechanics, 2013, 13, 571-599.	1.6	25
292	Implications of nonrandom seed abscission and global stilling for migration of windâ€dispersed plant species. Global Change Biology, 2013, 19, 1720-1735.	9.5	25
293	Wind-induced leaf transpiration. Advances in Water Resources, 2015, 86, 240-255.	3.8	25
294	Xylem–phloem hydraulic coupling explains multiple osmoregulatory responses to salt stress. New Phytologist, 2019, 224, 644-662.	7.3	25
295	A NONLINEAR FILTERING APPROACH FOR DETERMINING HYDRAULIC CONDUCTIVITY FUNCTIONS IN FIELD SOILS. Soil Science, 1993, 156, 293-301.	0.9	24
296	Evaluation of the Turbulent Kinetic Energy Dissipation Rate Inside Canopies by Zero- and Level-Crossing Density Methods. Boundary-Layer Meteorology, 2010, 136, 219-233.	2.3	24
297	Causality across rainfall time scales revealed by continuous wavelet transforms. Journal of Geophysical Research, 2010, 115, .	3.3	24
298	The rainfallâ€no rainfall transition in a coupled landâ€convective atmosphere system. Geophysical Research Letters, 2010, 37, .	4.0	24
299	Mean scalar concentration profile in a sheared and thermally stratified atmospheric surface layer. Physical Review E, 2013, 87, 023004.	2.1	24
300	Interpreting three-dimensional spore concentration measurements and escape fraction in a crop canopy using a coupled Eulerian–Lagrangian stochastic model. Agricultural and Forest Meteorology, 2014, 194, 118-131.	4.8	24
301	A reduced order model to analytically infer atmospheric CO2 concentration from stomatal and climate data. Advances in Water Resources, 2017, 104, 145-157.	3.8	24
302	A phenomenological model to describe turbulent friction in permeableâ€wall flows. Geophysical Research Letters, 2012, 39, .	4.0	23
303	The influence of water table depth and the free atmospheric state on convective rainfall predisposition. Water Resources Research, 2015, 51, 2283-2297.	4.2	23
304	Multiple mechanisms generate a universal scaling with dissipation for the airâ€water gas transfer velocity. Geophysical Research Letters, 2017, 44, 1892-1898.	4.0	23
305	The nonâ€local character of turbulence asymmetry in the convective atmospheric boundary layer. Quarterly Journal of the Royal Meteorological Society, 2017, 143, 494-507.	2.7	23
306	Does growing atmospheric CO ₂ explain increasing carbon sink in a boreal coniferous forest?. Global Change Biology, 2022, 28, 2910-2929.	9.5	23

#	Article	IF	CITATIONS
307	Energy, water, and carbon fluxes in a loblolly pine stand: Results from uniform and gappy canopy models with comparisons to eddy flux data. Journal of Geophysical Research, 2009, 114, .	3.3	22
308	Biotic and abiotic factors act in coordination to amplify hydraulic redistribution and lift. New Phytologist, 2010, 187, 3-6.	7.3	22
309	Secondary dispersal driven by overland flow in drylands: Review and mechanistic model development. Movement Ecology, 2014, 2, 7.	2.8	22
310	Flume experiments on intermittency and zero-crossing properties of canopy turbulence. Physics of Fluids, 2009, 21, .	4.0	21
311	Mean Flow Near Edges and Within Cavities Situated Inside Dense Canopies. Boundary-Layer Meteorology, 2013, 149, 19-41.	2.3	21
312	Predicting Scalar Source-Sink and Flux Distributions Within a Forest Canopy Using a 2-D Lagrangian Stochastic Dispersion Model. Boundary-Layer Meteorology, 2003, 109, 113-138.	2.3	20
313	Assessing the effects of atmospheric stability on the fine structure of surface layer turbulence using local and global multiscale approaches. Physics of Fluids, 2005, 17, 055104.	4.0	20
314	Effects of different representations of stomatal conductance response to humidity across the African continent under warmer CO _{2} $\hat{a} \in e$ nriched climate conditions. Journal of Geophysical Research G: Biogeosciences, 2015, 120, 979-988.	3.0	20
315	Characteristics of Gravity Waves over an Antarctic Ice Sheet during an Austral Summer. Atmosphere, 2015, 6, 1271-1289.	2.3	20
316	Environmental and biological controls on seasonal patterns of isoprene above a rain forest in central Amazonia. Agricultural and Forest Meteorology, 2018, 256-257, 391-406.	4.8	20
317	Mean Velocity and Shear Stress Distribution in Floating Treatment Wetlands: An Analytical Study. Water Resources Research, 2019, 55, 6436-6449.	4.2	20
318	Friction factor for turbulent open channel flow covered by vegetation. Scientific Reports, 2019, 9, 5178.	3.3	20
319	Revisiting the relation between momentum and scalar roughness lengths of urban surfaces. Quarterly Journal of the Royal Meteorological Society, 2020, 146, 3144-3164.	2.7	20
320	Reply To The Comment By Bink And Meesters. Boundary-Layer Meteorology, 1997, 84, 503-509.	2.3	19
321	On the Scaling Laws of the Velocity-Scalar Cospectra in the Canopy Sublayer Above Tall Forests. Boundary-Layer Meteorology, 2012, 145, 351-367.	2.3	19
322	Multiple mechanisms generate Lorentzian and 1/fα power spectra in daily stream-flow time series. Advances in Water Resources, 2012, 37, 94-103.	3.8	19
323	Fifty years to prove Malthus right. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 4161-4162.	7.1	19
324	Flume Experiments on Turbulent Flows Across Gaps of Permeable and Impermeable Boundaries. Boundary-Layer Meteorology, 2013, 147, 21-39.	2.3	19

#	Article	IF	CITATIONS
325	Cospectral budget of turbulence explains the bulk properties of smooth pipe flow. Physical Review E, 2014, 90, 063008.	2.1	19
326	Ecohydrological flow networks in the subsurface. Ecohydrology, 2014, 7, 1073-1078.	2.4	19
327	The effects of leaf size and microroughness on the branchâ€scale collection efficiency of ultrafine particles. Journal of Geophysical Research D: Atmospheres, 2015, 120, 3370-3385.	3.3	19
328	The <i>k</i> ^{â^'1} scaling of air temperature spectra in atmospheric surface layer flows. Quarterly Journal of the Royal Meteorological Society, 2016, 142, 496-505.	2.7	19
329	Dissipation Intermittency Increases Long-Distance Dispersal of Heavy Particles in the Canopy Sublayer. Boundary-Layer Meteorology, 2016, 159, 41-68.	2.3	19
330	Separating physical and biological controls on longâ€ŧerm evapotranspiration fluctuations in a tropical deciduous forest subjected to monsoonal rainfall. Journal of Geophysical Research G: Biogeosciences, 2015, 120, 1262-1278.	3.0	18
331	Matching ecohydrological processes and scales of banded vegetation patterns in semiarid catchments. Water Resources Research, 2016, 52, 2259-2278.	4.2	18
332	Mean-velocity profile of smooth channel flow explained by a cospectral budget model with wall-blockage. Physics of Fluids, 2016, 28, .	4.0	18
333	Recovering the Metabolic, Self-Thinning, and Constant Final Yield Rules in Mono-Specific Stands. Frontiers in Forests and Global Change, 2020, 3, .	2.3	18
334	Scalewise invariant analysis of the anisotropic Reynolds stress tensor for atmospheric surface layer and canopy sublayer turbulent flows. Physical Review Fluids, 2018, 3, .	2.5	18
335	Delayâ€induced rebounds in CO ₂ emissions and critical timeâ€scales to meet global warming targets. Earth's Future, 2016, 4, 636-643.	6.3	17
336	A Spectral Budget Model for the Longitudinal Turbulent Velocity in the Stable Atmospheric Surface Layer. Journals of the Atmospheric Sciences, 2016, 73, 145-166.	1.7	17
337	Direct numerical simulation of turbulent slope flows up to Grashof number. Journal of Fluid Mechanics, 2017, 829, 589-620.	3.4	17
338	Intrinsic Constraints on Asymmetric Turbulent Transport of Scalars Within the Constant Flux Layer of the Lower Atmosphere. Geophysical Research Letters, 2018, 45, 2022-2030.	4.0	17
339	Costs and benefits of nonâ€random seed release for longâ€distance dispersal in windâ€dispersed plant species. Oikos, 2018, 127, 1330-1343.	2.7	17
340	Resistance to Flow on a Sloping Channel Covered by Dense Vegetation following a Dam Break. Water Resources Research, 2019, 55, 1040-1058.	4.2	17
341	Direct partitioning of eddy-covariance water and carbon dioxide fluxes into ground and plant components. Agricultural and Forest Meteorology, 2022, 315, 108790.	4.8	17
342	Catastrophic hydraulic failure and tipping points in plants. Plant, Cell and Environment, 2022, 45, 2231-2266.	5.7	17

#	Article	IF	CITATIONS
343	Modelling sources and sinks of CO2, H2O and heat within a Siberian pine forest using three inverse methods. Quarterly Journal of the Royal Meteorological Society, 2003, 129, 1373-1393.	2.7	16
344	Turbulent transport efficiency and the ejection-sweep motion for momentum and heat on sloping terrain covered with vineyards. Agricultural and Forest Meteorology, 2012, 162-163, 98-107.	4.8	16
345	The Doomsday Equation and 50 years beyond: new perspectives on the humanâ€water system. Wiley Interdisciplinary Reviews: Water, 2015, 2, 407-414.	6.5	16
346	A Structure Function Model Recovers the Many Formulations for Airâ€Water Gas Transfer Velocity. Water Resources Research, 2018, 54, 5905-5920.	4.2	16
347	Leaf temperature and its dependence on atmospheric CO ₂ and leaf size. Geological Journal, 2021, 56, 866-885.	1.3	16
348	Analysis of Evaporative Flux Data for Various Climates. Journal of Irrigation and Drainage Engineering - ASCE, 1992, 118, 601-618.	1.0	15
349	Eulerian-Lagrangian model for predicting odor dispersion using instrumental and human measurements. Sensors and Actuators B: Chemical, 2005, 106, 122-127.	7.8	15
350	Resampling hierarchical processes in the wavelet domain: A case study using atmospheric turbulence. Physica D: Nonlinear Phenomena, 2005, 207, 24-40.	2.8	15
351	Similarity in Fog and Rainfall Intermittency. Geophysical Research Letters, 2018, 45, 10,691.	4.0	15
352	Effects of topography on inâ€canopy transport of gases emitted within dense forests. Quarterly Journal of the Royal Meteorological Society, 2019, 145, 2101-2114.	2.7	15
353	Deviations from unity of the ratio of the turbulent Schmidt to Prandtl numbers in stratified atmospheric flows over water surfaces. Physical Review Fluids, 2016, 1, .	2.5	15
354	The Influence of Hilly Terrain on Aerosol-Sized Particle Deposition into Forested Canopies. Boundary-Layer Meteorology, 2010, 135, 67-88.	2.3	14
355	A waveletâ€based spectral method for extracting selfâ€similarity measures in timeâ€varying twoâ€dimensional rainfall maps. Journal of Time Series Analysis, 2011, 32, 351-363.	1.2	14
356	Bottlenecks in turbulent kinetic energy spectra predicted from structure function inflections using the Von Kármán-Howarth equation. Physical Review E, 2015, 92, 033009.	2.1	14
357	Generalized logarithmic scaling for high-order moments of the longitudinal velocity component explained by the random sweeping decorrelation hypothesis. Physics of Fluids, 2016, 28, .	4.0	14
358	Closure Schemes for Stably Stratified Atmospheric Flows without Turbulence Cutoff. Journals of the Atmospheric Sciences, 2016, 73, 4817-4832.	1.7	14
359	Differential response of rice evapotranspiration to varying patterns of warming. Agricultural and Forest Meteorology, 2021, 298-299, 108293.	4.8	14
360	Sensible and latent heat flux predictions using conditional sampling methods. Water Resources Research, 1994, 30, 3053-3059.	4.2	13

#	Article	IF	CITATIONS
361	The random sweeping decorrelation hypothesis in stratified turbulent flows. Fluid Dynamics Research, 1995, 16, 275-295.	1.3	13
362	The Duke University Helicopter Observation Platform. Bulletin of the American Meteorological Society, 2009, 90, 939-954.	3.3	13
363	Effects of leaf area index and density on ultrafine particle deposition onto forest canopies: A LES study. Atmospheric Environment, 2018, 189, 153-163.	4.1	13
364	The anatomy of large-scale motion in atmospheric boundary layers. Journal of Fluid Mechanics, 2019, 858, 1-4.	3.4	13
365	Effects of Gentle Topography on Forestâ€Atmosphere Gas Exchanges and Implications for Eddy ovariance Measurements. Journal of Geophysical Research D: Atmospheres, 2020, 125, e2020JD032581.	3.3	13
366	Micro-climatic and crop responses to micro-sprinkler irrigation. Agricultural Water Management, 2021, 243, 106498.	5.6	13
367	A kernel-modulated SIR model for Covid-19 contagious spread from county to continent. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	13
368	Velocity asymmetry and turbulent transport closure in smooth- and rough-wall boundary layers. Physical Review Fluids, 2020, 5, .	2.5	13
369	Turbulent Intensities and Velocity Spectra for Bare and Forested Gentle Hills: Flume Experiments. Boundary-Layer Meteorology, 2008, 129, 25-46.	2.3	12
370	Particle deposition to forests: An alternative to K-theory. Atmospheric Environment, 2014, 94, 593-605.	4.1	12
371	Radiative and precipitation controls on root zone soil moisture spectra. Geophysical Research Letters, 2014, 41, 7546-7554.	4.0	12
372	The Spatio-temporal Statistical Structure and Ergodic Behaviour of Scalar Turbulence Within a Rod Canopy. Boundary-Layer Meteorology, 2015, 157, 447-460.	2.3	12
373	Enhanced Temperatureâ€Humidity Similarity Caused by Entrainment Processes With Increased Wind Shear. Journal of Geophysical Research D: Atmospheres, 2018, 123, 4110-4121.	3.3	12
374	Twenty-three-year timeline of ecological stable states and regime shifts in upper Amazon oxbow lakes. Hydrobiologia, 2018, 807, 99-111.	2.0	12
375	Indoor and Outdoor Radon Concentration Levels in Lebanon. Health Physics, 2018, 115, 344-353.	0.5	12
376	Large Eddies Regulate Turbulent Flux Gradients in Coupled Stable Boundary Layers. Geophysical Research Letters, 2019, 46, 6090-6100.	4.0	12
377	Peak grain forecasts for the US High Plains amid withering waters. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 26145-26150.	7.1	12
378	A network model for stemflow solute transport. Applied Mathematical Modelling, 2020, 88, 266-282.	4.2	12

#	Article	IF	CITATIONS
379	Dispersal of Transgenic Conifer Pollen. Managing Forest Ecosystems, 2006, , 121-146.	0.9	12
380	Reduced ecosystem resilience quantifies fineâ€scale heterogeneity in tropical forest mortality responses to drought. Global Change Biology, 2022, 28, 2081-2094.	9.5	12
381	Quantifying the complexity in mapping energy inputs and hydrologic state variables into land-surface fluxes. Geophysical Research Letters, 2001, 28, 3305-3307.	4.0	11
382	The Role of Wake Production on the Scaling Laws of Scalar Concentration Fluctuation Spectra Inside Dense Canopies. Boundary-Layer Meteorology, 2011, 139, 83-95.	2.3	11
383	The effects of gentle topographic variation on dispersal kernels of inertial particles. Geophysical Research Letters, 2012, 39, .	4.0	11
384	On the linkage between the <i>k</i> â^'5/3 spectral and <i>k</i> â^'7/3 cospectral scaling in high-Reynolds number turbulent boundary layers. Physics of Fluids, 2017, 29, .	4.0	11
385	Population agglomeration is a harbinger of the spatial complexity of COVID-19. Chemical Engineering Journal, 2021, 420, 127702.	12.7	11
386	Nonâ€Closure of Surface Energy Balance Linked to Asymmetric Turbulent Transport of Scalars by Large Eddies. Journal of Geophysical Research D: Atmospheres, 2021, 126, e2020JD034474.	3.3	11
387	Contaminant removal efficiency of floating treatment wetlands. Environmental Research Letters, 2020, 15, 1040b7.	5.2	11
388	Extremes, intermittency, and time directionality of atmospheric turbulence at the crossover from production to inertial scales. Physical Review Fluids, 2018, 3, .	2.5	11
389	Are the effects of large scale flow conditions really lost through the turbulent cascade?. Geophysical Research Letters, 2003, 30, .	4.0	10
390	Photosynthetic responses of a humid grassland ecosystem to future climate perturbations. Advances in Water Resources, 2005, 28, 910-916.	3.8	10
391	Stationarity, Homogeneity, and Ergodicity in Canopy Turbulence. , 2004, , 161-180.		10
392	Spatial organization of vegetation arising from non-local excitation with local inhibition in tropical rainforests. Physica D: Nonlinear Phenomena, 2009, 238, 1061-1067.	2.8	10
393	Evapotranspiration. , 2009, , 661-667.		10
394	A Velocity–Dissipation Lagrangian Stochastic Model for Turbulent Dispersion in Atmospheric Boundary-Layer and Canopy Flows. Boundary-Layer Meteorology, 2014, 152, 1-18.	2.3	10
395	Role of large eddies in the breakdown of the Reynolds analogy in an idealized mildly unstable atmospheric surface layer. Quarterly Journal of the Royal Meteorological Society, 2017, 143, 2182-2197.	2.7	10
396	Rootâ€zone soil moisture variability across African savannas: From pulsed rainfall to landâ€cover switches. Ecohydrology, 2020, 13, e2213.	2.4	10

#	Article	IF	CITATIONS
397	Resistance Formulations in Shallow Overland Flow Along a Hillslope Covered With Patchy Vegetation. Water Resources Research, 2020, 56, e2020WR027194.	4.2	10
398	Bridging the Urban Canopy Sublayer to Aerodynamic Parameters of the Atmospheric Surface Layer. Boundary-Layer Meteorology, 2022, 185, 35-61.	2.3	10
399	Inferring ecosystem parameters from observation of vegetation patterns. Geophysical Research Letters, 2011, 38, n/a-n/a.	4.0	9
400	Are atmospheric surface layer flows ergodic?. Geophysical Research Letters, 2013, 40, 3342-3346.	4.0	9
401	A K olmogorov―B rutsaert structure function model for evaporation into a turbulent atmosphere. Water Resources Research, 2017, 53, 3635-3644.	4.2	9
402	Ejective and Sweeping Motions Above a Peatland and Their Role in Relaxed-Eddy-Accumulation Measurements and Turbulent Transport Modelling. Boundary-Layer Meteorology, 2018, 169, 163-184.	2.3	9
403	Maximizing leaf carbon gain in varying saline conditions: An optimization model with dynamic mesophyll conductance. Plant Journal, 2020, 101, 543-554.	5.7	9
404	Universal Return to Isotropy of Inhomogeneous Atmospheric Boundary Layer Turbulence. Physical Review Letters, 2021, 126, 194501.	7.8	9
405	Assessing decoupling of above and below canopy air masses at a Norway spruce stand in complex terrain. Agricultural and Forest Meteorology, 2020, 294, 108149.	4.8	9
406	The Detection, Genesis, and Modeling of Turbulence Intermittency in the Stable Atmospheric Surface Layer. Journals of the Atmospheric Sciences, 2022, 79, 1171-1190.	1.7	9
407	Scaleâ€wise evolution of rainfall probability density functions fingerprints the rainfall generation mechanism. Geophysical Research Letters, 2010, 37, .	4.0	8
408	A primer on turbulence in hydrology and hydraulics: The power of dimensional analysis. Wiley Interdisciplinary Reviews: Water, 2019, 6, e1336.	6.5	8
409	Velocity and Temperature Dissimilarity in the Surface Layer Uncovered by the Telegraph Approximation. Boundary-Layer Meteorology, 2021, 180, 385-405.	2.3	8
410	Suppressed convective rainfall by agricultural expansion in southeastern <scp>B</scp> urkina <scp>F</scp> aso. Water Resources Research, 2015, 51, 5521-5530.	4.2	8
411	Multiscale denoising of self-similar processes. Journal of Geophysical Research, 2000, 105, 27049-27058.	3.3	7
412	A joint velocity-intermittency analysis reveals similarity in the vertical structure of atmospheric and hydrospheric canopy turbulence. Environmental Fluid Mechanics, 2020, 20, 77-101.	1.6	7
413	Scalewise Return to Isotropy in Stratified Boundary Layer Flows. Journal of Geophysical Research D: Atmospheres, 2020, 125, e2020JD032732.	3.3	7
414	Taylor dispersion in osmotically driven laminar flows in phloem. Journal of Fluid Mechanics, 2021, 913,	3.4	7

#	Article	IF	CITATIONS
415	A Multiscale Approach to Timescale Analysis: Isolating Diel Signals from Solute Concentration Time Series. Environmental Science & Technology, 2021, 55, 12731-12738.	10.0	7
416	A Sensitivity Analysis of the Nocturnal Boundary-Layer Properties to Atmospheric Emissivity Formulations. Boundary-Layer Meteorology, 2010, 134, 223-242.	2.3	6
417	A note on aerosol sized particle deposition onto dense and tall canopies situated on gentle cosine hills. Tellus, Series B: Chemical and Physical Meteorology, 2022, 63, 395.	1.6	6
418	Hydraulic determinism as a constraint on the evolution of organisms and ecosystems. Journal of Hydraulic Research/De Recherches Hydrauliques, 2012, 50, 547-557.	1.7	6
419	Introduction to a special section on ecohydrology of semiarid environments: Confronting mathematical models with ecosystem complexity. Water Resources Research, 2015, 51, 8677-8683.	4.2	6
420	The Effects of Canopy Morphology on Flow Over a Twoâ€Dimensional Isolated Ridge. Journal of Geophysical Research D: Atmospheres, 2020, 125, e2020JD033027.	3.3	6
421	Spectral Signature of Landscape Channelization. Geophysical Research Letters, 2021, 48, e2020GL091015.	4.0	6
422	Eddies in motion: visualizing boundary-layer turbulence above an open boreal peatland using UAS thermal videos. Atmospheric Measurement Techniques, 2021, 14, 3501-3521.	3.1	6
423	Laboratory study on behavioral responses of hybrid sturgeon, Acipenseridae, to wake flows induced by cylindrical bluff bodies. Science of the Total Environment, 2021, 799, 149403.	8.0	6
424	Low Dimensional Turbulent Transport Mechanics Near the Forest-Atmosphere Interface. Lecture Notes in Statistics, 1999, , 361-380.	0.2	6
425	Cospectral budget model describes incipient sediment motion in turbulent flows. Physical Review Fluids, 2019, 4, .	2.5	6
426	Eco-hydrological controls on summertime convective rainfall triggers. Global Change Biology, 2007, .	9.5	6
427	Radial–axial transport coordination enhances sugar translocation in the phloem vasculature of plants. Plant Physiology, 2022, 189, 2061-2071.	4.8	6
428	DETERMINATION OF AVERAGE FIELD SCALE SOIL SURFACE TEMPERATURE FROM METEOROLOGICAL MEASUREMENTS. Soil Science, 1993, 155, 166-174.	0.9	5
429	Roughness effects on fine-scale anisotropy and anomalous scaling in atmospheric flows. Physics of Fluids, 2009, 21, 035106.	4.0	5
430	An Analytical Model for the Two-Scalar Covariance Budget Inside a Uniform Dense Canopy. Boundary-Layer Meteorology, 2009, 131, 173-192.	2.3	5
431	Vegetation collection efficiency of ultrafine particles: From single fiber to porous media. Journal of Geophysical Research D: Atmospheres, 2014, 119, 222-229.	3.3	5
432	Derivation of Canopy Resistance in Turbulent Flow from First-Order Closure Models. Water (Switzerland), 2018, 10, 1782.	2.7	5

#	Article	IF	CITATIONS
433	Longitudinal dispersal properties of floating seeds within open-channel flows covered by emergent vegetation. Advances in Water Resources, 2020, 144, 103705.	3.8	5
434	Multiscale Legacy Responses of Soil Gas Concentrations to Soil Moisture and Temperature Fluctuations. Journal of Geophysical Research G: Biogeosciences, 2021, 126, e2020JG005865.	3.0	5
435	The Intensifying Role of High Wind Speeds on Airâ€Sea Carbon Dioxide Exchange. Geophysical Research Letters, 2021, 48, e2020GL090713.	4.0	5
436	Sweeping Effects Modify Taylor's Frozen Turbulence Hypothesis for Scalars in the Roughness Sublayer. Geophysical Research Letters, 2021, 48, e2021GL093746.	4.0	5
437	Self-similar geometries within the inertial subrange of scales in boundary layer turbulence. Journal of Fluid Mechanics, 2022, 942, .	3.4	5
438	Scaling Laws for the Length Scale of Energy ontaining Eddies in a Sheared and Thermally Stratified Atmospheric Surface Layer. Geophysical Research Letters, 2020, 47, e2020GL089997.	4.0	4
439	Intermittent Surface Renewals and Methane Hotspots in Natural Peatlands. Boundary-Layer Meteorology, 2021, 180, 407-433.	2.3	4
440	Modeling Heat, Water Vapor, and Carbon Dioxide Flux Distribution Inside Canopies Using Turbulent Transport Theories. Vadose Zone Journal, 2002, 1, 58-67.	2.2	4
441	Denoising ozone concentration measurements with BAMS filtering. Journal of Statistical Planning and Inference, 2006, 136, 2395-2405.	0.6	3
442	Advances in Water Resources: 35th Anniversary Issue Preface. Advances in Water Resources, 2013, 51, 1-2.	3.8	3
443	Correction: Secondary dispersal driven by overland flow in drylands: Review and mechanistic model development. Movement Ecology, 2014, 2, 14.	2.8	3
444	Aerodynamic Resistance Parameterization for Heterogeneous Surfaces Using a Covariance Function Approach in Spectral Space. Journals of the Atmospheric Sciences, 2019, 76, 3191-3209.	1.7	3
445	Inverse Cascade Evidenced by Information Entropy of Passive Scalars in Submerged Canopy Flows. Geophysical Research Letters, 2020, 47, e2020GL087486.	4.0	3
446	Fluctuation theorem and extended thermodynamics of turbulence. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2020, 476, 20200468.	2.1	3
447	Modeling Heat, Water Vapor, and Carbon Dioxide Flux Distribution Inside Canopies Using Turbulent Transport Theories. Vadose Zone Journal, 2002, 1, 58-67.	2.2	3
448	Roughness-induced critical phenomenon analogy for turbulent friction factor explained by a co-spectral budget model. Physics of Fluids, 2021, 33, .	4.0	3
449	Examining Parameterizations of Potential Temperature Variance Across Varied Landscapes for Use in Earth System Models. Journal of Geophysical Research D: Atmospheres, 2022, 127, .	3.3	3
450	Lidar measurements of the dimensionless humidity gradient in the unstable atmospheric surface layer. Water Science and Application, 2001, , 7-13.	0.3	2

#	Article	IF	CITATIONS
451	Dual length scale two-equation modelling of the canopy turbulent kinetic energy wake budget. Comptes Rendus - Mecanique, 2007, 335, 685-690.	2.1	2
452	Footprint Estimation for Multi-Layered Sources and Sinks Inside Canopies in Open and Protected Environments. Boundary-Layer Meteorology, 2015, 155, 229-248.	2.3	2
453	Mesoscale Temporal Wind Variability Biases Global Air–Sea Gas Transfer Velocity of CO2 and Other Slightly Soluble Gases. Remote Sensing, 2021, 13, 1328.	4.0	2
454	Probability law of turbulent kinetic energy in the atmospheric surface layer. Physical Review Fluids, 2021, 6, .	2.5	2
455	A Coâ€Spectral Budget Model Links Turbulent Eddies to Suspended Sediment Concentration in Channel Flows. Water Resources Research, 2022, 58, .	4.2	2
456	Profiles of high-order moments of longitudinal velocity explained by the random sweeping decorrelation hypothesis. Physical Review Fluids, 2022, 7, .	2.5	2
457	Inferring scalar sources and sinks within canopies using forward and inverse methods. Water Science and Application, 2001, , 31-45.	0.3	1
458	Boom and bust carbon-nitrogen dynamics during reforestation. Ecological Modelling, 2017, 360, 108-119.	2.5	1
459	Biometeorology – From agricultural origins to a last frontier in physics. Agricultural and Forest Meteorology, 2018, 255, 1-2.	4.8	1
460	Relation between the spectral properties of wall turbulence and the scaling of the Darcy-Weisbach friction factor. Physical Review Fluids, 2021, 6, .	2.5	1
461	The root-zone soil moisture spectrum in a mediterranean ecosystem. Journal of Hydrology, 2022, 609, 127757.	5.4	1
462	Katul Receives 2012 Hydrologic Sciences Award: Response. Eos, 2013, 94, 354-354.	0.1	0
463	Publisher's Note: Mean scalar concentration profile in a sheared and thermally stratified atmospheric surface layer [Phys. Rev. E87, 023004 (2013)]. Physical Review E, 2013, 87, .	2.1	0
464	Publisher's Note: Two phenomenological constants explain similarity laws in stably stratified turbulence [Phys. Rev. E89, 023007 (2014)]. Physical Review E, 2014, 89, .	2.1	0
465	The simultaneous effects of image force and diffusion on ultrafine particle deposition onto vegetation: A wind tunnel study. Aerosol Science and Technology, 2019, 53, 371-380.	3.1	0
466	Modeling Heat, Water Vapor, and Carbon Dioxide Flux Distribution Inside Canopies Using Turbulent Transport Theories. Vadose Zone Journal, 2002, 1, 58.	2.2	0
467	Ecohydrology. , 2006, , 29-1-29-42.		0
468	The random sweeping decorrelation hypothesis in stratified turbulent flows. International Journal of Multiphase Flow, 1996, 22, 110-111.	3.4	0

#	Article	IF	CITATIONS
469	GRADIENT-DIFFUSION CLOSURE AND THE EJECTION-SWEEP CYCLE IN CONVECTIVE BOUNDARY LAYERS. Ciência E Natura, 0, 38, 552.	0.0	Ο